COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE NORME DE LA CEI

INTERNATIONAL ELECTROTECHNICAL COMMISSION IEC STANDARD

Modification no 1

Juillet 1982 à la Amendment No. 1

July 1982 to

Publication 364-5-54 1980

Installations électriques des bâtiments

Cinquième partie: Choix et mise en œuvre des matériels électriques Chapitre 54: Mises à la terre et conducteurs de protection

Electrical installations of buildings

Part 5: Selection and erection of electrical equipment Chapter 54: Earthing arrangements and protective conductors

Les modifications contenues dans le présent document ont été approuvées suivant la Règle des Six Mois.

Le projet de modifications, discuté par le Comité d'Etudes N° 64, fut diffusé en mars 1981 pour approbation suivant la Règle des Six Mois, sous forme de document 64(Bureau Central)111.

The amendments contained in this document have been approved under the Six Months' Rule.

The draft amendments, discussed by Technical Committee No. 64, were circulated for approval under the Six Months' Rule in March 1981, as Document 64(Central Office)111.

© CEI 1982

Droits de reproduction réservés --- Copyright - all rights reserved

Bureau Central de la Commission Electrotechnique Internationale 3, rue de Varembé Genève, Suisse — 2 — 364-5-54 mod. 1/Amend. 1 © CEI/IEC 1982

Page 24

546.2 Conducteurs PEN

Remplacer le premier alinéa du paragraphe 546.2.1 par le suivant:

546.2.1 Dans le schéma TN, lorsque, dans les installations fixes, le conducteur de protection a une section au moins égale à 10 mm² en cuivre ou 16 mm² en aluminium, les fonctions de conducteur de protection et de conducteur neutre peuvent être combinées, sous réserve que la partie d'installation commune ne soit pas en aval d'un dispositif de protection à courant différentiel-résiduel.

Page 25

546.2 PEN conductors

Replace the first paragraph of Sub-clause 546.2.1 by the following:

546.2.1 In TN systems, for cables in fixed installations having a cross-sectional area not less than 10 mm² in copper or 16 mm² in aluminium, a single conductor may serve both as protective conductor and neutral conductor, provided that the part of the installation concerned is not protected by a residual current-operated device.

PRINTED IN SWITZERLAND
Computer typesetting and printing by Journal de Genève, Geneva

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE NORME DE LA CEI

INTERNATIONAL ELECTROTECHNICAL COMMISSION IEC STANDARD

Publication 364-5-54 Première édition — First edition 1980

Installations électriques des bâtiments

Cinquième partie: Choix et mise en œuvre des matériels électriques Chapitre 54: Mises à la terre et conducteurs de protection

Electrical installations of buildings

Part 5: Selection and erection of electrical equipment Chapter 54: Earthing arrangements and protective conductors

Droits de reproduction réservés - Copyright - all rights reserved Bureau Central de la Commission Electrotechnique Internationale 1, rue de Varembé Genève, Suisse

Révision de la présente publication

Le contenu technique des publications de la CEI est constamment revu par la Commission afin d'assurer qu'il reflète bien l'état actuel de la technique.

Les renseignements relatifs à ce travail de révision, à l'établissement des éditions révisées et aux mises à jour peuvent être obtenus auprès des Comités nationaux de la CEI et en consultant les documents ci-dessous:

- Bulletin de la CEI
- Rapport d'activité de la CEI
 Publié annuellement
- Catalogue des publications de la CEI
 Publié annuellement

Terminologie

En ce qui concerne la terminologie générale, le lecteur se reportera à la Publication 50 de la CEI: Vocabulaire Electrotechnique International (V.E.I.), qui est établie sous forme de chapitres séparés traitant chacun d'un sujet défini, l'Index général étant publié séparément. Des détails complets sur le V.E.I. peuvent être obtenus sur demande.

Les termes et définitions figurant dans la présente publication ont été soit repris du V.E.I., soit spécifiquement approuvés aux fins de cette publication.

Symboles graphiques et littéraux

Pour les symboles graphiques, symboles littéraux et signes d'usage général approuvés par la CEI, le lecteur consultera:

- la Publication 27 de la CEI: Symboles littéraux à utiliser en électrotechnique;
- la Publication 117 de la CEI: Symboles graphiques recommandés.

Les symboles et signes contenus dans la présente publication ont été soit repris des Publications 27 ou 117 de la CEI, soit spécifiquement approuvés aux fins de cette publication.

Autres publications de la CEI établies par le même Comité d'Etudes

L'attention du lecteur est attirée sur la page 3 de la couverture, qui énumère les autres publications de la CEI préparées par le Comité d'Etudes qui a établi la présente publication.

Revision of this publication

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology.

Information on the work of revision, the issue of revised editions and amendment sheets may be obtained from IEC National Committees and from the following IEC sources:

- IEC Bulletin
- Report on IEC Activities
 Published yearly
- Catalogue of IEC Publications
 Published yearly

Terminology

For general terminology, readers are referred to IEC Publication 50: International Electrotechnical Vocabulary (I.E.V.), which is issued in the form of separate chapters each dealing with a specific field, the General Index being published as a separate booklet. Full details of the I.E.V. will be supplied on request.

The terms and definitions contained in the present publication have either been taken from the I.E.V. or have been specifically approved for the purpose of this publication.

Graphical and letter symbols

For graphical symbols, and letter symbols and signs approved by the IEC for general use, readers are referred to:

- IEC Publication 27: Letter symbols to be used in electrical technology;
- IEC Publication 117: Recommended graphical symbols.

The symbols and signs contained in the present publication have either been taken from IEC Publications 27 or 117, or have been specifically approved for the purpose of this publication.

Other IEC publications prepared by the same Technical Committee

The attention of readers is drawn to the inside of the back cover, which lists other IEC publications issued by the Technical Committee which has prepared the present publication.

4844891 0034853 8 ■ C.D.U./U.D.C.: 621.316.172-744.001.25 621.316.99.001.25 621.315-78.001.25 614.825.001.25

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE NORME DE LA CEI

INTERNATIONAL ELECTROTECHNICAL COMMISSION IEC STANDARD

Publication 364-5-54

 $\begin{array}{c} \text{Première \'edition} \longrightarrow \text{First edition} \\ 1980 \end{array}$

Installations électriques des bâtiments

Cinquième partie: Choix et mise en œuvre des matériels électriques Chapitre 54: Mises à la terre et conducteurs de protection

Electrical installations of buildings

Part 5: Selection and erection of electrical equipment Chapter 54: Earthing arrangements and protective conductors

Mots clés: installations électriques des bâtiments: mesures de protection pour les installations intérieures, prescriptions de sécurité, mise à la terre, conducteurs de protection, prescriptions de sécurité électrique.

Key words: electrical installations of buildings: protective measures for indoor installations, safety requirements, earthing, protective conductors, electrical safety requirements.

Droits de reproduction réservés - Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Bureau Central de la Commission Electrotechnique Internationale

1, rue de Varembé Genève, Suisse

Prix Price Fr. s. 33.

SOMMAIRE

		Pages
Préa	MBULE	4
Préf.	ACE	4
Article	es	
541.	Généralités	8
542.	Liaisons à la terre. 542.1 Mises à la terre. 542.2 Prises de terre. 542.3 Conducteurs de terre. 542.4 Bornes principales de terre. 542.5 Interconnexion avec les mises à la terre d'autres installations.	8 8 10 12
543.	Conducteurs de protection. 543.1 Sections minimales. 543.2 Types de conducteurs de protection. 543.3 Conservation et continuité électrique des conducteurs de protection	12 12 20 22
544.	Mise à la terre pour des raisons de protection	22 22 22 22
545.	Mise à la terre pour des raisons fonctionnelles	24 24 24
546.	Mise à la terre pour des raisons combinées de protection et fonctionnelles	24 24 24
547.	Conducteurs d'équipotentialité	26 26 26
Anne	EXE A — Méthode de détermination du facteur k du paragraphe 543.1.1	28
Anne	EXE B — Prise de terre et conducteurs de protection	30

CONTENTS

		Page
Forev	WORD	5
Prefa	CE	5
Clause		
541.	General	9
542.	Connections to earth. 542.1 Earthing arrangements. 542.2 Earth electrodes. 542.3 Earthing conductors. 542.4 Main earthing terminals or bars. 542.5 Interconnection with earthing arrangements of other systems.	9 9 11 13
543.	Protective conductors	13 13 21 23
544.	Earthing arrangements for protective purposes	23 23 23 23
545.	Earthing arrangements for functional purposes	25 25 25
546.	Earthing arrangements for combined protective and functional purposes	25 25 25
547.	Equipotential bonding conductors	27 27 27
Арреі	NDIX A — Method for deriving the factor k in Sub-clause 543.1.1	29
Аррег	NDIX B — Earthing and protective conductors	30

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

INSTALLATIONS ÉLECTRIQUES DES BÂTIMENTS

Cinquième partie: Choix et mise en œuvre des matériels électriques

Chapitre 54: Mises à la terre et conducteurs de protection

PRÉAMBULE

- 1) Les décisions ou accords officiels de la CEI en ce qui concerne les questions techniques, préparés par des Comités d'Etudes où sont représentés tous les Comités nationaux s'intéressant à ces questions, expriment dans la plus grande mesure possible un accord international sur les sujets examinés.
- 2) Ces décisions constituent des recommandations internationales et sont agréées comme telles par les Comités nationaux.
- 3) Dans le but d'encourager l'unification internationale, la CEI exprime le vœu que tous les Comités nationaux adoptent dans leurs règles nationales le texte de la recommandation de la CEI, dans la mesure où les conditions nationales le permettent. Toute divergence entre la recommandation de la CEI et la règle nationale correspondante doit, dans la mesure du possible, être indiquée en termes clairs dans cette dernière.

PRÉFACE

La présente norme a été établie par le Comité d'Etudes Nº 64 de la CEI: Installations électriques des bâtiments.

Des projets de la présente norme furent discutés lors des réunions tenues à Toronto en 1976 et à Moscou en 1977. A la suite de cette dernière réunion, un projet, document 64(Bureau Central)68, fut soumis à l'approbation des Comités nationaux suivant la Règle des Six Mois en novembre 1977.

En outre, le texte de l'article 543.1, du paragraphe 543.1.1 et de l'annexe A, document 64(Bureau Central)75, fut diffusé pour approbation suivant la Procédure des Deux Mois en décembre 1978.

Les Comités nationaux des pays suivants se sont prononcés explicitement en faveur du projet de la Règle des Six. Mois:

Afrique du Sud (République d')	Israël
Australie	Italie*
Autriche	Japon
Belgique	Norvège
Bulgarie	Pays-Bas
Canada	Roumanie
Egypte	Suède
Espagne	Suisse
Etats-Unis d'Amérique	Turquie
France	

Les Comités nationaux des pays suivants se sont prononcés explicitement en faveur de la publication de l'article 543.1, du paragraphe 543.1.1 et de l'annexe A:

Afrique du Sud (République d')	Israël
Allemagne	Italie
Australie	Pays-Bas
Autriche	Pologne
Belgique	Roumanie
Danemark	Suède
Egypte	Suisse
Espagne	Turquie
Etats-Unis d'Amérique	Union des Républiques Socialistes Soviétiques
France	

^{*} Ce pays a changé son vote négatif original en vote positif après la diffusion du rapport de vote.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICAL INSTALLATIONS OF BUILDINGS

Part 5: Selection and erection of electrical equipment

Chapter 54: Earthing arrangements and protective conductors

FOREWORD

- 1) The formal decisions or agreements of the IEC on technical matters, prepared by Technical Committees on which all the National Committees having a special interest therein are represented, express, as nearly as possible, an international consensus of opinion on the subjects dealt with.
- 2) They have the form of recommendations for international use and they are accepted by the National Committees in that sense.
- 3) In order to promote international unification, the IEC expresses the wish that all National Committees should adopt the text of the IEC recommendation for their national rules in so far as national conditions will permit. Any divergence between the IEC recommendation and the corresponding national rules should, as far as possible, be clearly indicated in the latter.

PREFACE

This standard has been prepared by IEC Technical Committee No. 64, Electrical Installations of Buildings.

Drafts of this standard were discussed at the meetings held in Toronto in 1976 and in Moscow in 1977. As a result of the latter meeting, a draft, Document 64(Central Office)68, was submitted to the National Committees for approval under the Six Months' Rule in November 1977.

In addition, the wording of Clause 543.1, Sub-clause 543.1.1 and Appendix A, Document 64(Central Office)75, was circulated for approval under the Two Months' Procedure in December 1978.

The National Committees of the following countries voted explicitly in favour of the Six Months' Rule draft:

Netherlands Australia Norway Austria Belgium Romania South Africa (Republic of) Bulgaria Spain Canada Egypt Sweden Switzerland France Israel Turkey United States of America Italy* Japan

The National Committees of the following countries voted explicitly in favour of publication of Clause 543.1, Subclause 543.1.1 and Appendix A:

> Australia Austria Belgium Denmark Egypt France

Netherlands

Sweden Switzerland Turkey Germany

Union of Soviet Socialist Republics Israel United States of America Italy

Poland Romania

Spain

South Africa (Republic of)

^{*} This country has changed its original negative vote into a positive one after the report on the voting had been circulated.

IEC 364 PT*5-54 80 ■ 4844891 0034858 7 ■

Autres publications de la CEI citées dans la présente norme:

Publications nes 28: Spécification internationale du cuivre – type recuit.

79-8: Matériel électrique pour atmosphères explosives, Huitième partie: Classification des températures

maximales de surface.

111: Recommandation concernant la résistivité des fils en aluminium écroui dur industriel pour

conducteurs électriques.

287: Calcul du courant admissible dans les câbles en régime permanent (facteur de charge 100%).

364-1: Installations électriques des bâtiments. Première partie: Domaine d'application, objet et

définitions.

364-4-41: Quatrième partie: Protection pour assurer la sécurité. Chapitre 41: Protection contre les

chocs électriques.

IEC 364 PT*5-54 80 ■ 74844891 0034859 9 ■

Other IEC publications quoted in this standard:

Publications Nos. 28: International Standard of Resistance for Copper.

79-8: Electrical Apparatus for Explosive Gas Atmospheres, Part 8: Classification of Maximum

Surface Temperatures.

111: Recommendation for the Resistivity of Commercial Hard-drawn Aluminium Electrical

Conductor Wire.

287: Calculation of the Continuous Current Rating of Cables (100% Load Factor).
364-1: Electrical Installations of Buildings, Part 1: Scope, Object and Definitions.
364-4-41: Part 4: Protection for Safety. Chapter 41: Protection against Electric Shock.

INSTALLATIONS ÉLECTRIQUES DES BÂTIMENTS

Cinquième partie: Choix et mise en œuvre des matériels électriques Chapitre 54: Mises à la terre et conducteurs de protection

541. GÉNÉRALITÉS

541.1 La valeur de la résistance de la prise de terre doit satisfaire aux conditions de protection ou de service de l'installation électrique.

542. LIAISONS À LA TERRE

542.1 Mises à la terre

- 542.1.1 Les dispositions de mise à la terre peuvent être utilisées à la fois ou séparément pour des raisons de protection ou des raisons fonctionnelles suivant les prescriptions de l'installation.
- 542.1.2 Le choix et la mise en œuvre des matériels assurant la mise à la terre doivent être tels que:
 - la valeur de la résistance de mise à la terre soit conforme aux règles de protection et de fonctionnement de l'installation et supposée maintenue telle,
 - les courants de défaut à la terre et les courants de fuite puissent circuler sans danger, particulièrement du point de vue des contraintes thermiques, thermomécaniques et électromécaniques,
 - la solidité ou la protection mécanique soit assurée en fonction des conditions estimées d'influences externes (chapitre 32).
- 542.1.3 Des précautions doivent être prises contre les risques de dommages aux autres parties métalliques par suite des effets d'électrolyse.

542.2 Prises de terre

- 542.2.1 Les types suivants de prises de terre peuvent être utilisés:
 - piquets ou tubes;
 - rubans ou fils;
 - plaques;
 - ceinturage à fond de fouille;
 - armatures du béton;
 - Note. Des précautions spéciales doivent être prises lorsque la construction comprend des armatures de béton précontraint.
 - conduites métalliques d'eau dans les conditions du paragraphe 542.2.5;
 - autres structures enterrées appropriées (voir aussi paragraphe 542.2.6).

ELECTRICAL INSTALLATIONS OF BUILDINGS

Part 5: Selection and erection of electrical equipment

Chapter 54: Earthing arrangements and protective conductors

541. GENERAL

541.1 The performance of the earthing arrangements shall satisfy the safety and functional requirements of the electrical installation.

542. CONNECTIONS TO EARTH

542.1 Earthing arrangements

- 542.1.1 The earthing arrangements may be used jointly or separately for protective or functional purposes according to the requirements of the installation.
- 542.1.2 The selection and erection of the equipment of the earthing arrangements shall be such that:
 - the value of earthing resistance is in accordance with the protective and functional requirements of the installation and expected to be continuously effective,
 - earth-fault currents and earth-leakage currents can be carried without danger, particularly from thermal, thermomechanical and electro-mechanical stresses,
 - it is adequately robust or has additional mechanical protection appropriate to the assessed conditions of external influence (Chapter 32).
- 542.1.3 Precautions shall be taken against the risk of damage to other metallic parts through electrolysis.

542.2 Earth electrodes

- 542.2.1 The following types of earth electrodes may be used:
 - earth rods or pipes;
 - earth tapes or wires;
 - earth plates;
 - earth electrodes embedded in foundations;
 - metallic reinforcement of concrete;
 - Note. Special care should be exercised where the construction includes pre-stressed concrete.
 - metallic water-pipe systems under the conditions of Sub-clause 542.2.5;
 - other suitable underground structures (see also Sub-clause 542.2.6).

- Note. L'efficacité d'une prise de terre dépend des conditions locales du terrain, et une ou plusieures prises de terre appropriées aux conditions du terrain et à la valeur de la résistance nécessaire doivent être choisies.
 La valeur de la résistance de la prise de terre peut être calculée ou mesurée.
 La préparation d'un guide pratique est à l'étude.
- 542.2.2 Le type et la profondeur d'enfouissement des prises de terre doivent être tels que l'assèchement du sol et le gel n'augmentent pas la résistance de la prise de terre au-dessus de la valeur prescrite.
- 542.2.3 Les matériaux utilisés et la réalisation des prises de terre doivent être tels qu'ils résistent aux efforts mécaniques dus à la corrosion.
- 542.2.4 La conception de la mise à la terre doit tenir compte de l'augmentation possible de la résistance de la prise de terre due à la corrosion.
- 542.2.5 Des canalisations métalliques de distribution d'eau peuvent être utilisées comme prises de terre, pourvu que l'accord du distributeur d'eau soit obtenu et que des dispositions appropriées soient prises pour que l'exploitant de l'installation électrique soit averti de tout changement dans les canalisations d'eau.
 - Note. Il est souhaitable que la fiabilité des dispositions de mise à la terre ne dépende pas d'autres corps de métier.
- 542.2.6 Des canalisations métalliques affectées à d'autres services que celui mentionné au paragraphe 542.2.5 (telles que celles servant aux liquides ou gaz inflammables, chauffage central, etc.) ne doivent pas être utilisées comme prises de terre pour des raisons de protection.
 - Note. Cette prescription n'exclut pas la liaison équipotentielle avec d'autres services pour satisfaire aux prescriptions du chapitre 41.
- 542.2.7 Les gaines de plomb et autres enveloppes de câbles qui ne sont pas susceptibles de détérioration due à une corrosion excessive peuvent être utilisées comme prises de terre pourvu que l'accord du propriétaire du câble soit obtenu et que des dispositions appropriées soient prises pour que l'exploitant de l'installation électrique soit averti de tout changement apporté au câble qui pourrait affecter ses caractéristiques de mise à la terre.

542.3 Conducteurs de terre

542.3.1 Les conducteurs de terre doivent satisfaire aux prescriptions de l'article 543.1 et, lorsqu'ils sont enterrés, leur section doit être conforme aux valeurs du tableau 54A.

Note. — Les dimensions pour les conducteurs non circulaires sont à l'étude.

Tableau 54A
Sections conventionnelles des conducteurs de terre

	Protégé mécaniquement	Non protégé mécaniquement
Protégé contre la corrosion	Suivant l'article 543.1	16 mm ² Cu 16 mm ² Fe
Non protégé contre la corrosion	25 mm ² Cu 50 mm ² Fe	

- Note. The efficacy of any earth electrode depends on local soil conditions, and one or more earth electrodes suitable for the soil conditions and value of earth resistance required should be selected.
 The value of earth resistance of the earth electrode may be calculated or measured.
 Preparation of a practical guide is under consideration.
- 542.2.2 The type and embedded depth of earth electrodes shall be such that soil drying and freezing will not increase the earth resistance of the earth electrodes above the required value.
- 542.2.3 The materials used and the construction of the earth electrodes shall be such as to withstand mechanical damage due to corrosion.
- 542.2.4 The design of the earthing arrangements shall take account of possible increase in earth resistance of earth electrodes due to corrosion.
- 542.2.5 Metallic water-pipe systems may be used as earth electrodes provided that the consent of the distributor of the water is obtained and that suitable arrangements exist for the user of the electrical installation to be warned of any proposed changes in the water-pipe system.
 - Note. It is desirable that the reliability of the earthing arrangements should not depend on other disciplines.
- 542.2.6 Metallic pipe systems of services other than that mentioned in Sub-clause 542.2.5 as this concerns only the water service (e.g. for flammable liquids or gases, heating systems, etc.) shall not be used as earth electrodes for protective purposes.
 - Note. This requirement does not preclude the equipotential bonding of other services for compliance with Chapter 41.
- 542.2.7 Lead sheaths and other metallic coverings of cables not liable to deterioration through excessive corrosion may be used as earth electrodes provided the consent of the owner of the cables is obtained and suitable arrangements exist for the user of the electrical installation to be warned of any proposed changes to the cable that may affect its suitability as an earth electrode.

542.3 Earthing conductors

542.3.1 Earthing conductors shall comply with Clause 543.1, and where buried in the soil their cross-sectional areas shall be in accordance with Table 54A.

Note. — Dimensions for non-circular conductors are under consideration.

Table 54A

Conventional cross-sectional areas of earthing conductors

	Mechanically protected	Mechanically unprotected
Protected against corrosion	As required by Clause 543.1	16 mm ² Cu 16 mm ² Fe
Not protected against corrosion	25 mm ² Cu 50 mm ² Fe	

IEC 364 PT*5-54 80 ■ 4844891 0034864 2 ■

542.3.2 La liaison d'un conducteur de terre à une prise de terre doit être soigneusement réalisée et électriquement satisfaisante.

Lorsque des raccords sont utilisés, ils ne doivent pas endommager les éléments de la prise de terre (par exemple, les tuyaux) ni les conducteurs de terre.

542.4 Bornes principales de terre

- 542.4.1 Dans toute installation, une borne principale de terre doit être prévue et les conducteurs suivants doivent lui être reliés:
 - les conducteurs de terre;
 - les conducteurs de protection;
 - les conducteurs de liaison équipotentielle principale;
 - les conducteurs de mise à la terre fonctionnelle, si nécessaire.
- 542.4.2 Un dispositif doit être prévu sur les conducteurs de terre en un endroit accessible, permettant de mesurer la résistance de la prise de terre correspondante; ce dispositif peut être combiné avec la borne principale de terre. Ce dispositif doit être démontable seulement à l'aide d'un outil et doit être mécaniquement sûr et assurer la continuité électrique.

542.5 Interconnexion avec les mises à la terre d'autres installations

542.5.1 Installations à tensions plus élevées

A l'étude.

542.5.2 Installations de protection contre la foudre

·A l'étude.

542.5.3 Autres installations

A l'étude; de telles installations sont celles énumérées au paragraphe 1.3 de la Publication 364-1 de la CEI.

543. CONDUCTEURS DE PROTECTION

Note. — Pour les conducteurs de protection de liaison équipotentielle, voir section 547.

543.1 Sections minimales

La section des conducteurs de protection doit être

- soit calculée conformément au paragraphe 543.1.1,
- soit choisie conformément au paragraphe 543.1.2.

Dans les deux cas, il y a lieu de tenir compte du paragraphe 543.1.3.

Note. — L'installation doit être conçue de manière que les bornes des matériels puissent recevoir les sections des conducteurs de protection ainsi déterminées.

542.3.2 The connection of an earthing conductor to an earth electrode shall be soundly made and electrically satisfactory.

Where a clamp is used, it shall not damage the electrode (e.g. a pipe) or the earthing conductor.

542.4 Main earthing terminals or bars

- 542.4.1 In every installation, a main earthing terminal or bar shall be provided and the following conductors shall be connected to it:
 - earthing conductors;
 - protective conductors;
 - main equipotential bonding conductors;
 - functional earthing conductors, if required.
- 542.4.2 Means shall be provided in an accessible position for disconnecting the earthing conductor. Such means may conveniently be combined with the main earthing terminal or bar, to permit measurement of the resistance of the earthing arrangements. This joint shall be disconnectable only by means of a tool, shall be mechanically strong, and ensure the maintenance of electrical continuity.

542.5 Interconnection with earthing arrangements of other systems

542.5.1 Higher voltage systems

Under consideration.

542.5.2 Lightning protection systems

Under consideration.

542.5.3 Other systems

Under consideration, for such installations as are listed in Clause 1.3 of IEC Publication 364-1.

543. PROTECTIVE CONDUCTORS

Note. — For protective conductors for equipotential bonding, see Section 547.

543.1 Minimum cross-sectional areas

The cross-sectional area of protective conductors shall either be

- calculated in accordance with Sub-clause 543.1.1, or
- selected in accordance with Sub-clause 543.1.2

In both cases, Sub-clause 543.1.3 shall be taken into account.

Note. — The installation should be so prepared that equipment terminals are capable of accepting these protective conductors.

543.1.1 La section doit être au moins égale à celle déterminée par la formule suivante (applicable seulement pour des temps de coupure non supérieurs à 5 s):

$$S = \frac{\sqrt{I^2 t}}{k}$$

dans laquelle:

- S = section du conducteur de protection, en millimètres carrés
- $I={
 m valeur}$ efficace du courant de défaut qui peut traverser le dispositif de protection pour un défaut d'impédance négligeable, en ampères
- t = temps de fonctionnement du dispositif de coupure, en secondes
 - Note. Il doit être tenu compte de l'effet de limitation du courant par les impédances du circuit et du pouvoir limiteur (intégrale de Joule) du dispositif de protection.
- facteur dont la valeur dépend de la nature du métal du conducteur de protection, des isolations et autres parties et des températures initiale et finale (pour la détermination de k, voir l'annexe A).
 Des valeurs de k pour les conducteurs de protection dans différentes conditions sont indiquées dans les tableaux 54B, 54C, 54D et 54E.

Si l'application de la formule conduit à des valeurs non normalisées, il y a lieu d'utiliser les conducteurs ayant la section normalisée immédiatement supérieure.

- Notes 1. Il est nécessaire que la section ainsi calculée soit compatible avec les conditions imposées à l'impédance de la boucle de défaut.
 - 2. Pour les limites de température pour les installations dans les atmosphères explosives, voir la Publication 79-8 de la CEI.
 - 3. Il doit être tenu compte des températures maximales admissibles pour les connexions.
 - 4. Les valeurs pour les conducteurs isolés à isolant minéral sont à l'étude.

Tabléau 54B

Valeurs de k pour les conducteurs de protection isolés non incorporés aux câbles et les conducteurs de protection nus en contact avec le revêtement de câbles

	Nature de l'isolant des conducteurs de protection ou des revêtements de câbles		
	Polychlorure de vinyle (PVC)	Polyéthylène réticulé (PRC) Ethylène propylène (EPR)	Caoutchouc butyle
Température finale	160 °C	250 °C	220 °C
Matériau du conducteur		ķ	
Cuivre Aluminium	143 95	176 116	166 110
Acier	52	64	60

Note. — La température initiale du conducteur est supposée être de 30 °C.

543.1.1 The cross-sectional area shall be not less than the value determined by the following formula (applicable only for disconnection times not exceeding 5 s):

$$S = \frac{\sqrt{I^2 t}}{k}$$

where:

- S = cross-sectional area, in square millimetres
- I = value (a.c., r.m.s.) of fault current for a fault of negligible impedance, which can flow through the protective device, in amperes
- t = operating time of the disconnecting device, in seconds
 - Note. Account should be taken of the current-limiting effect of the circuit impedances and the limiting capability (Joule integral) of the protective device.
- k = factor dependent on the material of the protective conductor, the insulation and other parts and the initial and the final temperatures (for calculation of k, see Appendix A).
 Values of k for protective conductors in various use or service are as given in Tables 54B, 54C, 54D and 54E.

If application of the formula produces non-standard sizes, conductors of the nearest higher standard cross-sectional area shall be used.

- Notes 1. It is necessary that the cross-sectional area so calculated be compatible with the conditions imposed by fault loop impedance.
 - 2. For limitations of temperatures for installations in potentially explosive atmospheres, see IEC Publication 79-8.
 - 3. Maximum permissible temperatures for joints should be taken into account.
 - 4. Values for mineral-insulated cables are under consideration,

TABLE 54B

Values of k for insulated protective conductors not incorporated in cables, or bare protective conductors in contact with cable covering

	Insulation of protective conductor or cable covering		
·	PVC	EPR XLPE	Butyl rubber
Final temperature	160 °C	250 °C	220 °C
Material of conductor		k	-
Copper	143	176	166
Aluminium	95	116	110
Steel	52	64	60

Valeurs de k pour conducteurs de protection constitutifs d'un câble multiconducteur

Tableau 54C

	Nature de l'isolant		
	Polychlorure de vinyle (PVC)	Polyéthylène réticulé (PRC) Ethylène propylène (EPR)	Caoutchouc butyl
Température initiale	70 °C .	90 °C	85 °C
Température finale	160 °C	250 °C	220 °C
Matériau du conducteur	·		
Cuivre Aluminium	115 .76	143 94	134 89

TABLEAU 54D

Valeurs de k pour conducteurs de protection constitués par les armures ou gaines de câbles

	Nature de l'isolant		
	Polychlorure de vinyle (PVC)	Polyéthylène réticulé (PRC) Ethylène propylène (EPR)	Caoutchouc butyle
Température initiale			
Température finale	160 °C	250 °C	220 °C
Matériau du conducteur		k	
Acier Acier/Cuivre Aluminium Plomb		Valeurs à l'étude	

IEC 364 PT*5-54 80 ■ 4844891 0034869 1 ■ - 17 --

Table 54C

Values of k for protective conductor as a core in a multicore cable

-	Insulation material		
	PVC	XLPE EPR	Butyl rubber
Initial temperature	70 °C	90 °C	85 °C
Final temperature	160 °C	250 °C	220 °C
Material of conductor	·	k	
Copper Aluminium	. 115 76	143 94	134 89

Table 54D

Values of k for protective conductor as a sheath or armour of a cable

	Insulation material		
	PVC	XLPE EPR	Butyl rubber
Initial temperature		-	
Final temperature	160 °C	250 °C	220 °C
Material of conductor	k Values under consideration		
Steel Steel/Copper Aluminium Lead			

IEC 364 PT*5-54 80 ■ 4844891 0034870 8 ■

TABLEAU 54E

Valeurs de k pour conducteurs nus ne risquant pas d'endommager les matériaux voisins par les températures indiquées

Matériaux du conducte	Conditions	Visibles et dans des emplacements réservés*	Conditions normales	Risques d'incendie
Cuivre	Température maximale	500 °C	200 °C	150 °C
	k	228	159	138
Aluminium	Température maximale	300 °C	200 °C	150 °C
	k	125	105	91
Acier	Température maximale	.500 °C	200 °C	150 °C
	maximale k	82	58	50

^{*} Les valeurs de température indiquées supposent qu'elles ne compromettent pas les qualités de ces connexions.

543.1.2 Les sections des conducteurs de protection ne doivent pas être inférieures à celles du tableau 54F. Dans ce cas, la vérification selon le paragraphe 543.1.1 n'est habituellement pas nécessaire.

Si l'application du tableau conduit à des valeurs non normalisées, il y a lieu d'utiliser les conducteurs ayant la section normalisée la plus proche.

TABLEAU 54F

Section des conducteurs de phase de l'installation S' (mm²)	Section minimale des conducteurs de protection $S_{\mathbb{P}}$ (mm ²)	
S ≤ 16	S	
16 < S ≤ 35	16	
S > 35	$\frac{S}{2}$	

Les valeurs du tableau 54F ne sont valables que si les conducteurs de protection sont constitués du même métal que les conducteurs actifs. S'il n'en est pas ainsi, les sections des conducteurs de protection sont déterminées de manière à présenter une conductibilité équivalente à celle qui résulte de l'application du tableau 54F.

- 543.1.3 Dans tous les cas, les conducteurs de protection qui ne font pas partie de la canalisation d'alimentation doivent avoir une section d'au moins:
 - 2,5 mm² si les conducteurs de protection comportent une protection mécanique,
 - 4 mm² si les conducteurs de protection ne comportent pas de protection mécanique.

Note. — Voir aussi le chapitre 52 concernant le choix et la mise en œuvre des conducteurs en fonction des influences externes.

TABLE 54E

Values of k for bare conductors where there is no risk of damage to any neighbouring material by the temperatures indicated

Material of conducto	Conditions	Visible and in restricted areas*	Normal conditions	Fire risk
Copper	Temp. max.	500 °C	200 °C	150 °C
	<i>k</i> ·	228	159	138
Aluminium	Temp. max.	300 °C	200 °C	150 °C
	k	125	105	91
Steel	Temp. max.	500 °C	200 °C	150 °C
	k .	82	58	50

^{*} The temperatures indicated are valid only where they do not impair the quality of the connections,

543.1.2 The cross-sectional area of the protective conductor shall be not less than the appropriate value shown in Table 54F. In this case, checking of compliance with Sub-clause 543.1.1 is usually not necessary.

If the application of this table produces non-standard sizes, conductors having the nearest standard cross-sectional area are to be used.

Table 54F

Cross-sectional area of phase conductors of the installation $S \pmod{2}$	Minimum cross-sectional area of the corresponding protective conductor $S_{\mathbf{P}}$ (mm ²)
S ≤ 16 16 < S ≤ 35	<i>S</i> 16
S > 35	$\frac{S}{2}$

The values in Table 54F are valid only if the protective conductor is made of the same metal as the phase conductors. If this is not so, the cross-sectional area of the protective conductor is to be determined in a manner which produces a conductance equivalent to that which results from the application of Table 54F.

- 543.1.3 The cross-sectional area of every protective conductor which does not form part of the supply cable or cable enclosure shall be, in any case, not less than:
 - 2.5 mm² if mechanical protection is provided,
 - 4 mm² if mechanical protection is not provided.

Note.—See also Chapter 52 regarding the selection and erection of conductors and cables in relation to external influences.

543.2 Types de conducteurs de protection

Note. — Pour le choix et la mise en œuvre des conducteurs de protection, il y a lieu de tenir compte à la fois des prescriptions des chapitres 52 et 54.

- 543.2.1 Peuvent être utilisés comme conducteurs de protection:
 - des conducteurs dans des câbles multiconducteurs;
 - des conducteurs isolés ou nus passant dans une enveloppe commune avec les conducteurs actifs;
 - des conducteurs séparés nus ou isolés;
 - les revêtements métalliques, par exemple gaines, écrans, armures, etc., de certains câbles (des prescriptions complémentaires sont à l'étude);
 - des conduits métalliques ou d'autres enveloppes métalliques pour les conducteurs (des prescriptions complémentaires sont à l'étude);
 - certains éléments conducteurs.
- 543.2.2 Lorsque l'installation comporte des parties d'enveloppes d'ensembles montés en usine ou des canalisations préfabriquées à enveloppe métallique, ces enveloppes peuvent être utilisées comme conducteurs de protection si elles satisfont simultanément aux trois conditions suivantes:
 - a) leur continuité électrique doit être réalisée de façon à être protégée contre les détériorations mécaniques, chimiques ou électrochimiques;
 - b) leur conductibilité doit être au moins égale à celle résultant de l'application de l'article 543.1;
 - c) elles doivent permettre le raccordement d'autres conducteurs de protection à tout endroit de dérivation prédéterminée.
- 543.2.3 Les gaines métalliques (nues ou isolées) de certaines canalisations, en particulier la gaine extérieure des conducteurs blindés à isolant minéral, et certains conduits et goulottes métalliques (types à l'étude) peuvent être utilisés comme conducteurs de protection des circuits correspondants, s'ils satisfont simultanément aux conditions a) et b) du paragraphe 543.2.2. Les autres conduits ne peuvent pas servir de conducteurs de protection.
- 543.2.4 Des éléments conducteurs peuvent être utilisés comme conducteurs de protection s'ils satisfont simultanément aux quatre conditions suivantes:
 - a) leur continuité électrique doit être assurée, soit par construction, soit au moyen de connexions appropriées, de façon à être protégée contre les détériorations mécaniques, chimiques ou électrochimiques;
 - b) leur conductibilité doit être au moins égale à celle résultant de l'application de l'article 543.1;
 - c) ils ne doivent pouvoir être démontés que si des mesures compensatrices sont prévues;
 - d) ils ont été étudiés et, si nécessaire, adaptés pour cet usage.

L'utilisation de canalisations métalliques d'eau est admise sous réserve de l'accord de l'autorité compétente. Les conduites de gaz ne doivent pas être utilisées comme conducteurs de protection.

IEC 364 PT*5-54 80 ■ 4844891 0034873 3 ■ -21 -

543.2 Types of protective conductors

Note. — For the selection and erection of various types of protective conductors, account should be taken of the requirements of both Chapters 52 and 54.

- 543.2.1 Protective conductors may comprise:
 - conductors in multicore cables;
 - insulated or bare conductors in a common enclosure with live conductors;
 - fixed bare or insulated conductors;
 - metal coverings, for example, the sheaths, screens and armouring of certain cables (further requirements under consideration);
 - metal conduits or other metal enclosures for conductors (further requirements under consideration);
 - certain extraneous conductive parts.
- 543.2.2 Where the installation contains enclosures or frames of factory-built assemblies or metal-enclosed busbar trunking systems (busways), the metal enclosures or frames may be used as protective conductors if they simultaneously satisfy the following three requirements:
 - a) their electrical continuity shall be achieved in such a manner as to ensure protection against mechanical, chemical or electrochemical deterioration;
 - b) their conductance shall be at least equal to that resulting from the application of Clause 543.1;
 - c) they shall permit the connection of other protective conductors at every predetermined tap-off point.
- 543.2.3 The metallic covering including sheaths (bare or insulated) of certain wiring, in particular the sheaths of mineral-insulated cables, and certain metallic conduits and trunking for electrical purposes (types under consideration) may be used as a protective conductor for the corresponding circuits, if they satisfy both requirements a) and b) in Sub-clause 543.2.2. Other conduits for electrical purposes shall not be used as a protective conductor.
- 543.2.4 Extraneous conductive parts may be used as a protective conductor if they satisfy all the following four requirements:
 - a) their electrical continuity shall be assured, either by construction or by suitable connections, in such a way as to be protected against mechanical, chemical or electrochemical deterioration;
 - b) their conductance shall be at least equal to that resulting from the application of Clause 543.1;
 - c) unless compensatory measures are provided, precautions shall be taken against their removal;
 - d) they have been considered for such a use and, if necessary, suitably adapted.

The use of metallic water pipes is permitted, provided the consent of a person or body responsible for the water system is obtained. Gas pipes shall not be used as protective conductors.

IEC 364 PT*5-54 &C ■ 4844891 0034874 5 ■

- 543.2.5 Des éléments conducteurs ne doivent pas être utilisés comme conducteurs PEN.
- 543,3 Conservation et continuité électrique des conducteurs de protection
- 543.3.1 Les conducteurs de protection doivent être convenablement protégés contre les détériorations mécaniques et chimiques et les efforts électrodynamiques.
- 543.3.2 Les connexions doivent être accessibles pour vérification et essais, à l'exception de celles effectuées dans des boîtes remplies de matière de remplissage ou dans des joints scellés.
- 543.3.3 Aucun appareillage ne doit être inséré dans le conducteur de protection, mais des connexions qui peuvent être démontées à l'aide d'un outil peuvent être utilisées pour des essais.
- 543.3.4 Lorsqu'un dispositif de contrôle de continuité de terre est utilisé, les enroulements ne doivent pas être insérés dans les conducteurs de protection.
- 543.3.5 Les masses des matériels à relier aux conducteurs de protection ne doivent pas être connectées en série dans un circuit de protection, à l'exception du cas visé au paragraphe 543.2.2.
- 544. MISE À LA TERRE POUR DES RAISONS DE PROTECTION
 - Note. Pour les mesures de protection dans les schémas TN, TT et IT, voir le chapitre 41.
- 544.1 Conducteurs de protection utilisés en liaison avec les dispositifs de protection contre les surintensités
 - Note. Lorsque les dispositifs de protection contre les surintensités sont utilisés pour la protection contre les chocs électriques, l'incorporation des conducteurs de protection dans la même canalisation que les conducteurs actifs ou à leur proximité immédiate est fortement recommandée.
- 544.2 Prises de terre et conducteurs de protection pour dispositifs à tension de défaut
- 544.2.1 La prise de terre auxiliaire doit être électriquement indépendante de tous les autres éléments métalliques mis à la terre, tels qu'éléments de construction métalliques, conduites métalliques, gaines métalliques de câbles. Cette condition est considérée comme remplie si la prise de terre auxiliaire est installée à une distance spécifiée de tout élément métallique mis à la terre (valeur de la distance à l'étude).
- 544.2.2 La liaison à la prise de terre auxiliaire doit être isolée afin d'éviter tout contact avec le conducteur de protection ou les éléments qui lui sont reliés ou avec des éléments conducteurs qui peuvent être ou sont en contact avec eux.
 - Note. Cette prescription est nécessaire afin d'éviter que l'élément sensible à la tension ne soit court-circuité par inadvertance.
- 544.2.3 Le conducteur de protection ne doit être relié qu'aux masses de ceux des appareils électriques dont l'alimentation est interrompue lorsque le dispositif de protection fonctionne dans des conditions de défaut.
- 544.3 Courants de fuite importants

Prescriptions à l'étude.

IEC 364 PT*5-54 80 ■ 4844891 0034875 7 ■

- 543.2.5 Extraneous conductive parts shall not be used as PEN conductors.
- 543.3 Preservation of electrical continuity of protective conductors
- 543.3.1 Protective conductors shall be suitably protected against mechanical and chemical deterioration and electrodynamic forces.
- 543.3.2 Joints of protective conductors shall be accessible for inspection and testing except in compound-filled or encapsulated joints.
- 543.3.3 No switching device shall be inserted in the protective conductor, but joints which can be disconnected for test purposes by use of a tool may be provided.
- 543.3.4 Where electrical monitoring of earth-continuity is used, the operating coils shall not be inserted in protective conductors.
- 543.3.5 Exposed conductive parts of apparatus shall not be used to form part of the protective conductor for other equipment except as allowed by Sub-clause 543.2.2.
- 544. EARTHING ARRANGEMENTS FOR PROTECTIVE PURPOSES

Note. - For protective measures for TN, TT and IT systems of earthing, see Chapter 41.

- 544.1 Protective conductors used with overcurrent protective devices
 - Note. When overcurrent protective devices are used for protection against electric shock, the incorporation of the protective conductor in the same wiring system as the live conductors or in their immediate proximity is strongly recommended.
- 544.2 Earthing and protective conductors for fault-voltage-operated protective devices
- 544.2.1 An auxiliary earth electrode shall be provided electrically independent of all other earthed metal, for example, constructional metalwork, pipes, or metal-sheathed cables. This requirement is considered to be fulfilled if the auxiliary earth electrode is installed at a specified distance from all other earthed metal (value of distance under consideration).
- 544.2.2 The earthing conductor leading to the auxiliary earth electrode shall be insulated to avoid contact with the protective conductor or any of the parts connected thereto or extraneous conductive parts which are, or may be, in contact with them.
 - Note. This requirement is necessary to prevent the voltage-sensitive element being inadvertently bridged.
- 544.2.3 The protective conductor shall be connected only to the exposed conductive parts of those items of electrical equipment whose supply will be interrupted in the event of the protective device operating under fault conditions.
- 544.3 Excessive earth-leakage currents

Requirements under consideration.

545. MISE À LA TERRE POUR DES RAISONS FONCTIONNELLES

545.1 Généralités

Les mises à la terre pour des raisons fonctionnelles doivent être réalisées de manière à assurer le fonctionnement correct du matériel et permettre un fonctionnement correct et fiable de l'installation.

(Des prescriptions complémentaires sont à l'étude.)

545.2 Terres sans bruit

A l'étude.

546. MISE À LA TERRE POUR DES RAISONS COMBINÉES DE PROTECTION ET FONCTIONNELLES

546.1 Généralités

Lorsque la mise à la terre est requise à la fois pour des raisons de protection et des raisons fonctionnelles, les prescriptions des mesures de protection sont prépondérantes.

546.2 Conducteurs PEN

546.2.1 Dans le schéma TN, lorsque, dans les installations fixes, le conducteur de protection a une section au moins égale à 10 mm² en cuivre ou en aluminium, les fonctions de conducteur de protection et de conducteur neutre peuvent être combinées, sous réserve que la partie d'installation commune ne soit pas en aval d'un dispositif de protection à courant différentiel-résiduel.

Toutefois, la section minimale d'un conducteur PEN peut être de 4 mm² sous réserve que le câble soit d'un type concentrique conforme aux normes de la CEI et que les connexions assurant la continuité soient doublées à tous les points de connexion sur le parcours du conducteur périphérique. Le conducteur PEN concentrique doit être utilisé depuis le transformateur et limité à une installation utilisant des accessoires conçus à cet effet.

546.2.2 Le conducteur PEN doit être isolé pour la tension la plus élevée à laquelle il peut être soumis afin d'éviter des courants vagabonds.

Note. - Le conducteur PEN n'a pas besoin d'être isolé à l'intérieur des ensembles d'appareillages.

546.2.3 Si, à partir de n'importe quel point de l'installation, le conducteur neutre et le conducteur de protection sont séparés, il n'est pas permis de les relier ensemble en aval de ce point. A l'endroit de la séparation, il y a lieu de prévoir des bornes ou barres séparées pour le conducteur de protection et pour le conducteur neutre. Le conducteur PEN doit être relié à la borne ou à la barre prévue pour le conducteur de protection.

IEC 364 PT*5-54 80 ■ 4844891 0034877 0 ■

545. EARTHING ARRANGEMENTS FOR FUNCTIONAL PURPOSES

545.1 General

Earthing arrangements for functional purposes shall be provided to ensure correct operation of equipment or to permit reliable and proper functioning of installations.

(Further requirements under consideration.)

545.2 Low noise

Under consideration,

546. EARTHING ARRANGEMENTS FOR COMBINED PROTECTIVE AND FUNCTIONAL PURPOSES

546.1 General

Where earthing for combined protective and functional purposes is required, the requirements for protective measures shall prevail.

546.2 PEN conductors

546.2.1 In TN systems, for cables in fixed installations having a cross-sectional area not less than 10 mm² for both copper and aluminium, a single conductor may serve both as protective conductor and neutral conductor, provided that the part of the installation concerned is not protected by a residual current-operated device.

However, the minimum cross-sectional area of a PEN conductor may be 4 mm², provided that the cable is of a concentric type conforming to IEC standards and that duplicate continuity connections exist at all joints and terminations in the run of the concentric conductors.

546.2.2 The PEN conductor shall be insulated for the highest voltage to which it may be subjected to avoid stray currents.

Note. — The PEN conductor need not be insulated inside switchgear and controlgear assemblies.

546.2.3 If from any point of the installation the neutral and protective functions are provided by separate conductors, it is inadmissible to connect these conductors to each other from that point. At the point of separation, separate terminals or bars shall be provided for the protective and neutral conductors. The PEN conductor shall be connected to the terminal or bar intended for the protective conductor.

IEC 364 PT*5-54 80 ■ 4844891 0034878 2 ■

547. CONDUCTEURS D'ÉQUIPOTENTIALITÉ

547.1 Sections minimales

547.1.1 Conducteur d'équipotentialité principale

Le conducteur d'équipotentialité principale doit avoir une section non inférieure à la moitié de celle du plus grand conducteur de protection de l'installation, avec un minimum de 6 mm²; toutefois, sa section peut être limitée à 25 mm² s'il est en cuivre ou la section équivalente s'il est en un autre métal.

547.1.2 Conducteur d'équipotentialité supplémentaire

Si le conducteur d'équipotentialité supplémentaire relie deux masses, sa section n'est pas inférieure à la plus petite de celle des conducteurs de protection reliés à ces masses.

Si le conducteur supplémentaire d'équipotentialité relie une masse à un élément conducteur, sa section n'est pas inférieure à la moitié de celle du conducteur de protection relié à cette masse.

Ce conducteur doit satisfaire, si nécessaire, au paragraphe 543.1.3.

La liaison équipotentielle supplémentaire peut être assurée soit par des éléments conducteurs non démontables, tels que des charpentes métalliques, soit par des conducteurs supplémentaires, soit par une combinaison des deux.

547.1.3 Compteurs d'eau

Lorsque des canalisations d'eau à l'intérieur d'un bâtiment sont utilisées pour la mise à la terre ou comme conducteurs de protection, les compteurs d'eau doivent être shuntés par un conducteur de section appropriée à sa fonction de conducteur de protection, de conducteur d'équipotentialité ou de conducteur de mise à la terre fonctionnelle.

547.2 Conducteurs d'équipotentialité non reliés à la terre

A l'étude.

IEC 364 PT*5-54 80 ■ 4844891 0034879 4 ■

547. EQUIPOTENTIAL BONDING CONDUCTORS

547.1 Minimum cross-sectional areas

547.1.1 Main equipotential bonding conductors

Main equipotential bonding conductors shall have cross-sectional areas not less than half the cross-sectional area of the largest protective conductor of the installation, subject to a minimum of 6 mm². The cross-sectional area need not, however, exceed 25 mm² if the bonding conductor is of copper or a cross-sectional area affording equivalent current-carrying capacity in other metals.

547.1.2 Supplementary equipotential bonding conductors

A supplementary equipotential bonding conductor connecting two exposed conductive parts may have a cross-sectional area not less than that of the smaller protective conductor connected to the exposed conductive parts.

A supplementary equipotential bonding conductor connecting exposed conductive parts to extraneous conductive parts may have a cross-sectional area not less than half the cross-sectional area of the corresponding protective conductor.

Sub-clause 543.1.3 shall be complied with as necessary.

Supplementary equipotential bonding may be extraneous conductive parts of a permanent nature, such as structural metalwork, or by supplementary conductors, or by a combination of these.

547.1.3 Bonding of water meters

Where water pipes of a building are used for earthing purposes or as protective conductors, the water meter shall be bonded across and the bonding conductor shall be of appropriate cross-sectional area according to its use as a protective conductor, equipotential bonding conductor or functional earthing conductor.

547.2 Non-earthed equipotential bonding

Under consideration.

ANNEXE A

METHODE DE DÉTERMINATION DU FACTEUR & DU PARAGRAPHE 543.1.1

Le facteur k est déterminé par la formule

$$k = \sqrt{\frac{Q_{c} (B + 20)}{\varrho_{20}}} \ln \left(1 + \frac{\theta_{f} - \theta_{i}}{B + \theta_{i}}\right)$$

dans laquelle:

 Q_c = capacité thermique volumique du matériau du conducteur [J/°C mm³]

B = inverse du coefficient de température de la résistivité à 0 °C pour le conducteur [°C]

 $\varrho_{20}=$ résistivité électrique du matériau du conducteur à 20 °C [Ω mm]

 θ_i = température initiale du conducteur [°C]

 $\theta_{\rm f}$ = température finale du conducteur [°C]

Matériau	B (°C)*	Q _c (J/°C mm³)**	Q ₂₀ (Ω mm)*	$\sqrt{\frac{\dot{Q}_{\rm c} (B+20)}{\varrho_{20}}}$
Cuivre	234,5	3,45 × 10 ⁻³	17,241 × 10 ⁻⁶	226
Aluminium	228	$2,5 \times 10^{-3}$	$28,264 \times 10^{-6}$	148
Plomb	230	$1,45 \times 10^{-3}$	214×10^{-6}	42
Acier	202	3,8 × 10 ⁻³	138 × 10 ⁻⁶	78.

^{*} Valeurs extraites des Publications 28, 111 et 287 de la CEI (tableau III).

** Valeurs extraites de ELECTRA, 24 octobre 1972, p.63.

APPENDIX A

METHOD FOR DERIVING THE FACTOR k IN SUB-CLAUSE 543.1.1

The factor k is determined from the formula

$$k = \sqrt{\frac{Q_{c} (B + 20)}{\varrho_{20}} \ln \left(1 + \frac{\theta_{f} - \theta_{i}}{B + \theta_{i}}\right)}$$

 $Q_{\rm c}=$ v,olumetric heat capacity of conductor material [J/°C mm³]

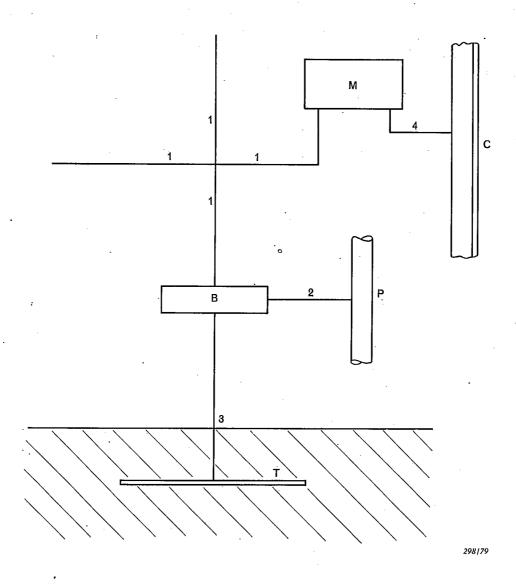
B = reciprocal of temperature coefficient of resistivity at 0 °C for the conductor [°C] q_{20} = electrical resistivity of conductor material at 20 °C [Ω mm]

 θ_i = initial temperature of conductor [°C]

 $\theta_{\rm f}$ = final temperature of conductor [°C]

Material	B (°C)*	Q _c (J/°C mm³)**	<i>Q</i> ₂₀ (Ω mm)*	$\sqrt{\frac{Q_{\rm c}~({\rm B}+20)}{Q_{20}}}$
Copper	234.5	3.45×10^{-3}	17.241 × 10 ⁻⁶	226
Aluminium Lead	228 230	$\begin{array}{ccc} 2.5 & \times 10^{-3} \\ 1.45 \times 10^{-3} \end{array}$	28.264×10^{-6} 214×10^{-6}	148 42
Steel	202	3.8×10^{-3}	138×10^{-6}	78

Values taken from IEC Publications 28, 111 and 287 (Table III).


** Values taken from ELECTRA, 24 October 1972, p. 63.

ANNEXE B

MISE À LA TERRE ET CONDUCTEURS DE PROTECTION

APPENDIX B

EARTHING AND PROTECTIVE CONDUCTORS

- 1 = Conducteur de protection
- 2 = Conducteur de liaison équipotentielle principale
- 3 = Conducteur de terre
- 4 = Conducteur d'équipotentialité supplémentaire
- B = Borne principale de terre
- M = Masse
- C = Elément conducteur
- P = Canalisation métallique principale d'eau
- T = Prise de terre

- 1 = protective conductor
- 2 = main equipotential bonding conductor
- 3 = earthing conductor
- 4 = supplementary equipotential bonding conductor
- B = main earthing terminal
- M = exposed conductive part
- C = extraneous conductive part
- P = main metallic water pipe
- T = earth electrode

Autres publications de la CEI préparées par le Comité d'Etudes Nº 64

364: - Installatio	ons électriques des bâtiments.
364-1 (1972)	Première partie: Domaine d'application, objet
	et définitions.
	Modification Nº 1 (1976).
364-2 (1970)	Deuxième partie: Principes fondamentaux.
364-3 (1977)	Troisième partie: Détermination des caracté-
	ristiques générales.
364-3A (1979)	Premier complément.
364-4-41 (1977)	Quatrième partie: Protection pour assurer la
	sécurité. Chapitre 41: Protection contre les
	chocs électriques.
	Modification N°1 (1979)
364-4-43 (1977)	Quatrième partie: Protection pour assurer la
	sécurité.
	Chapitre 43: Protection contre les surintensités.
364-4-473 (1977)	Quatrième partie: Protection pour assurer la
	sécurité. Chapitre 47: Application des mesures
	de protection pour assurer la sécurité. Section
	473: Mesures de protection contre les sur-
	intensités.
364-5-51 (1979)	Cinquième partie: Choix et mise en œuvre
	des matériels électriques. Chapitre 51: Règles
	communes.
448 (1974)	Courants admissibles dans les conducteurs
	pour installations électriques des bâtiments.
449 (1973)	Domaines de tensions des installations électri-
	ques des bâtiments.
479 (1974)	Effets du courant passant par le corps hu-
	main.
	our les installations électriques.
585-1 (1977)	Caravanes et bâteaux de plaisance.

Other IEC publications prepared by Technical Committee No. 64

364: - Electrical 364-1 (1972)	installations of buildings. Part 1: Scope, object and definitions.
364-2 (1970) 364-3 (1977)	Amendment No. 1 (1976). Part 2: Fundamental principles. Part 3: Assessment of general characteristics.
364-3A (1979) 364-4-41 (1977)	First supplement, Part 4: Protection for safety. Chapter 41: Protection against electric shock. Amendment No.1 (1979).
364-4-43 (1977)	Part 4: Protection for safety.
364-4-473 (1977)	Chapter 43: Protection against overcurrent. Part 4: Protection for safety. Chapter 47: Application of protective measures for safety. Section 473: Measures of protection against overcurrent.
364-5-51 (1979)	Part 5: Selection and erection of electrical equipment. Chapter 51: Common Rules.
448 (1974)	Current-carrying capacities of conductors for electrical installations of buildings.
449 (1973)	Voltage bands for electrical installations of
479 (1974)	buildings. Effects of current passing through the human body.
585: - Electrical 585-1 (1977)	installation guide. Caravans, boats and yachts.
- · · · · · · · · · · · · · · · · · · ·	