

PUBLICLY
AVAILABLE
SPECIFICATION

IEC
 PAS 62030

Pre-Standard First edition
2004-11

Digital data communications
for measurement and control –
Fieldbus for use in industrial
control systems –

Section 1:
MODBUS® Application Protocol
Specification V1.1a –

Section 2:
Real-Time Publish-Subscribe (RTPS)
Wire Protocol Specification Version 1.0

Reference number
IEC/PAS 62030:2004(E)

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PUBLICLY
AVAILABLE
SPECIFICATION

IEC
 PAS 62030

Pre-Standard First edition
2004-11

Digital data communications
for measurement and control –
Fieldbus for use in industrial
control systems –

Section 1:
MODBUS® Application Protocol
Specification V1.1a –

Section 2:
Real-Time Publish-Subscribe (RTPS)
Wire Protocol Specification Version 1.0

PRICE CODE

© IEC 2004 ⎯ Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

XG

For price, see current catalogue

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 2 – PAS 62030 © IEC:2004 (E)

CONTENTS

FOREWORD.. 5

Section 1 – MODBUS® Application Protocol Specification V1.1a .. 7
1 MODBUS .. 7

1.1 Introduction .. 7
1.1.1 Scope of this section... 7
1.1.2 Normative references .. 8

1.2 Abbreviations ... 8
1.3 Context .. 8
1.4 General description .. 9

1.4.1 Protocol description .. 9
1.4.2 Data Encoding ...11
1.4.3 MODBUS data model ...12
1.4.4 MODBUS Addressing model...13
1.4.5 Define MODBUS Transaction ...14

1.5 Function Code Categories ...16
1.5.1 Public Function Code Definition..17

1.6 Function codes descripitons ..17
1.6.1 01 (0x01) Read Coils ...17
1.6.2 02 (0x02) Read Discrete Inputs ..19
1.6.3 03 (0x03) Read Holding Registers ..21
1.6.4 04 (0x04) Read Input Registers ..22
1.6.5 05 (0x05) Write Single Coil...23
1.6.6 06 (0x06) Write Single Register..24
1.6.7 07 (0x07) Read Exception Status (Serial Line only)26
1.6.8 08 (0x08) Diagnostics (Serial Line only) ...27
1.6.9 11 (0x0B) Get Comm Event Counter (Serial Line only)..............................30
1.6.10 12 (0x0C) Get Comm Event Log (Serial Line only)32
1.6.11 15 (0x0F) Write Multiple Coils ..34
1.6.12 16 (0x10) Write Multiple registers ...35
1.6.13 17 (0x11) Report Slave ID (Serial Line only) ...37
1.6.14 20 / 6 (0x14 / 0x06) Read File Record ...37
1.6.15 21 / 6 (0x15 / 0x06) Write File Record ...39
1.6.16 22 (0x16) Mask Write Register ...41
1.6.17 23 (0x17) Read/Write Multiple registers ..43
1.6.18 24 (0x18) Read FIFO Queue ..45
1.6.19 43 (0x2B) Encapsulated Interface Transport ..46
1.6.20 43 / 13 (0x2B / 0x0D) CANopen General Reference Request and

Response PDU ..47
1.6.21 43 / 14 (0x2B / 0x0E) Read Device Identification48

1.7 MODBUS Exception Responses...52
Annex A of Section 1 (informative) MODBUS MESSAGING ON TCP/IP IMPLEMENTATION GUIDE..54
A.1 INTRODUCTION ..54

A.1.1 OBJECTIVES ..54
A.1.2 CLIENT / SERVER MODEL..54

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 3 –

A.1.3 REFERENCE DOCUMENTS ..55
A.2 ABBREVIATIONS ...55
A.3 CONTEXT ..55

A.3.1 PROTOCOL DESCRIPTION ..55
A.3.2 MODBUS FUNCTIONS CODES DESCRIPTION ...57

A.4 FUNCTIONAL DESCRIPTION...58
A.4.1 MODBUS COMPONENT ARCHITECTURE MODEL..58
A.4.2 TCP CONNECTION MANAGEMENT ..61
A.4.3 USE of TCP/IP STACK ..65
A.4.4 COMMUNICATION APPLICATION LAYER ...71

A.5 IMPLEMENTATION GUIDELINE ...82
A.5.1 OBJECT MODEL DIAGRAM ..83
A.5.2 IMPLEMENTATION CLASS DIAGRAM...87
A.5.3 SEQUENCE DIAGRAMS..89
A.5.4 CLASSES AND METHODS DESCRIPTION ..92

Annex B of Section 1 (Informative) MODBUS RESERVED FUNCTION CODES, SUBCODES
AND MEI TYPES ..96
Annex C of Section 1 (Informative) CANOPEN GENERAL REFERENCE COMMAND96

Section 2 – Real-Time Publish-Subscribe (RTPS) Wire Protocol Specification Version 1.097
2 RTPS ...97

2.1 Basic Concepts ...97
2.1.1 Introduction..97
2.1.2 The RTPS Object Model...98
2.1.3 The Basic RTPS Transport Interface ..99
2.1.4 Notational Conventions ..100

2.2 Structure Definitions ..101
2.2.1 Referring to Objects: the GUID...101
2.2.2 Building Blocks of RTPS Messages ..102

2.3 RTPS Message Format ..105
2.3.1 Overall Structure of RTPS Messages ...105
2.3.2 Submessage Structure ...105
2.3.3 How to Interpret a Message ...106
2.3.4 Header ..107
2.3.5 ACK...108
2.3.6 GAP...109
2.3.7 HEARTBEAT ...110
2.3.8 INFO_DST ...112
2.3.9 INFO_REPLY...112
2.3.10 INFO_SRC...113
2.3.11 INFO_TS ...114
2.3.12 ISSUE ...114
2.3.13 PAD...115
2.3.14 VAR...116
2.3.15 Versioning and Extensibility ...117

2.4 RTPS and UDP/IPv4..118
2.4.1 Concepts ...118
2.4.2 RTPS Packet Addressing ...118
2.4.3 Possible Destinations for Specific Submessages121

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 4 – PAS 62030 © IEC:2004 (E)

2.5 Attributes of Objects and Metatraffic ..122
2.5.1 Concept ...122
2.5.2 Wire Format of the ParameterSequence ...124
2.5.3 ParameterID Definitions ...125
2.5.4 Reserved Objects ..126
2.5.5 Examples...130

2.6 Publish-Subscribe Protocol ..132
2.6.1 Publication and Subscription Objects ...132
2.6.2 Representation of User Data ..137

2.7 CST Protocol ...139
2.7.1 Object Model ...139
2.7.2 Structure of the Composite State (CS)..140
2.7.3 CSTWriter..140
2.7.4 CSTReader ..145
2.7.5 Overview of Messages used by CST ..147

2.8 Discovery with the CST Protocol ..149
2.8.1 Overview ...149
2.8.2 Managers Keep Track of Their Managees ..150
2.8.3 Inter-Manager Protocol ..150
2.8.4 The Registration Protocol ...151
2.8.5 The Manager-Discovery Protocol..152
2.8.6 The Application Discovery Protocol ..152
2.8.7 Services Discovery Protocol ...153

Annex A of Section 2 (informative) CDR for RTPS ..155
A.1 Primitive Types...155

A.1.1 Semantics ..155
A.1.2 Encoding ..155
A.1.3 octet ...155
A.1.4 boolean ..156
A.1.5 unsigned short ..156
A.1.6 short...156
A.1.7 unsigned long ...156
A.1.8 long ..156
A.1.9 unsigned long long ...156
A.1.10 long long ..156
A.1.11 float 157
A.1.12 double ..157
A.1.13 char..157
A.1.14 wchar ...157

A.2 Constructed Types ...157
A.2.1 Alignment ...157
A.2.2 Identifiers ...157
A.2.3 List of constructed types ...157
A.2.4 Struct ...158
A.2.5 Enumeration ...158
A.2.6 Sequence ...158
A.2.7 Array ..158
A.2.8 String ...158
A.2.9 Wstring...159

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 5 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DIGITAL DATA COMMUNICATIONS FOR MEASUREMENT AND CONTROL –

FIELDBUS FOR USE IN INDUSTRIAL CONTROL SYSTEMS –

Section 1: MODBUS®* Application Protocol Specification V1.1a –
Section 2: Real-Time Publish-Subscribe (RTPS) Wire Protocol

Specification Version 1.0

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and

members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

A PAS is a technical specification not fulfilling the requirements for a standard but made
available to the public .

IEC-PAS 62030 has been processed by subcommittee 65C: Digital communications, of IEC
technical committee 65: Industrial-process measurement and control.

The text of this PAS is based on the
following document:

This PAS was approved for
publication by the P-members of the
committee concerned as indicated in

the following document

Draft PAS Report on voting

65C/341A/NP 65C/347/RVN

Following publication of this PAS, which is a pre-standard publication, the technical
committee or subcommittee concerned will transform it into an International Standard.

* MODBUS is a trademark of Schneider Automation Inc.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 6 – PAS 62030 © IEC:2004 (E)

It is foreseen that, at a later date, the content of this PAS will be incorporated in the future
new edition of the IEC 61158 series according to its structure.

This PAS shall remain valid for an initial maximum period of three years starting from
2004-11. The validity may be extended for a single three-year period, following which it shall
be revised to become another type of normative document or shall be withdrawn.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 7 –

Overview

This PAS has been divided into two sections. Section 1 deals with MODBUS® Application
Protocol Specification V1.1a while Section 2 covers the Real-Time Publish-Subscribe (RTPS)
Wire Protocol Specification Version 1.0.
It is intended that the content of this PAS will be incorporated in the future new editions of the
various parts of IEC 61158 series according to the structure of this series.

Section 1 – MODBUS® Application Protocol Specification V1.1a

1 MODBUS

1.1 Introduction

1.1.1 Scope of this section

MODBUS is an application layer messaging protocol, positioned at level 7 of the OSI model,
that provides client/server communication between devices connected on different types of
buses or networks.

The industry’s serial de facto standard since 1979, MODBUS continues to enable millions of
automation devices to communicate. Today, support for the simple and elegant structure of
MODBUS continues to grow. The Internet community can access MODBUS at a reserved
system port 502 on the TCP/IP stack.

MODBUS is a request/reply protocol and offers services specified by function codes.
MODBUS function codes are elements of MODBUS request/reply PDUs. The objective of this
PAS is to describe the function codes used within the framework of MODBUS transactions.

MODBUS is an application layer messaging protocol for client/server communication between
devices connected on different types of buses or networks.
It is currently implemented using:

 TCP/IP over Ethernet. See Annex A of Section 1: MODBUS MESSAGING ON TCP/IP
IMPLEMENTATION GUIDE.

 Asynchronous serial transmission over a variety of media (wire : EIA/TIA-232-E, EIA-422-A,
EIA/TIA-485-A; fiber, radio, etc.)

 MODBUS PLUS, a high speed token passing network.
NOTE The "Specification" is Clause 1 of this PAS.

NOTE MODBUS Plus is not in this PAS.

TCP

Modbus on TCP

MODBUS APPLICATION LAYER

IP

Ethernet
Physical layer

Ethernet II /802.3

EIA/TIA-232 or
EIA/TIA-485

Master / Slave

Physical layer

MODBUS+ / HDLC

Other

Other

Figure 1 – MODBUS communication stack

This Figure 1 represents conceptually the MODBUS communication stack.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 8 – PAS 62030 © IEC:2004 (E)

1.1.2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 61131 (all parts): Programmable controllers

EIA*/TIA**-232-E: Interface between Data Terminal Equipment and Data Circuit-Terminating
Equipment Employing Serial Binary data Interchange

EIA-422-A: Electrical Characteristics-Balanced Voltage Digital Interface Circuit

EIA/TIA-485-A: Electrical Characteristics of Generators and Receivers for Use in balanced
Digital Multipoint Systems

RFC 791, Interne Protocol, Sep81 DARPA

1.2 Abbreviations

ADU Application Data Unit
HDLC High level Data Link Control
HMI Human Machine Interface
IETF Internet Engineering Task Force
I/O Input/Output
IP Internet Protocol
MAC Medium Access Control
MB MODBUS Protocol
MBAP MODBUS Application Protocol
PDU Protocol Data Unit
PLC Programmable Logic Controller
TCP Transport Control Protocol

1.3 Context

The MODBUS protocol allows an easy communication within all types of network
architectures.

* EIA: Electronic Industries Alliance.
** TIA: Telecomunication Industry Association.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 9 –

PLC PLCHMI I/ O I/ O I/ ODrive

MODBUS ON TCP/IP

Gateway Gateway Gateway

M
O

D
B

U
S

O
N

 M
B

+

M
O

D
B

U
S

O
N

 R
S2

32

M
O

D
B

U
S

O
N

 R
S4

85

Device

HMI

PLC PLC

Drive

I/ O
I/ O

I/ O

I/ O

Device

MODBUS COMMUNICATION

Figure 2 – Example of MODBUS Network Architecture

Every type of devices (PLC, HMI, Control Panel, Driver, Motion control, I/O Device…) can use
MODBUS protocol to initiate a remote operation.
The same communication can be done as well on serial line as on an Ethernet TCP/IP
networks. Gateways allow a communication between several types of buses or network using
the MODBUS protocol.

1.4 General description

1.4.1 Protocol description

The MODBUS protocol defines a simple protocol data unit (PDU) independent of the
underlying communication layers. The mapping of MODBUS protocol on specific buses or
network can introduce some additional fields on the application data unit (ADU).

Additional address Function code Data Error check

ADU

PDU

Figure 3 – General MODBUS frame

The MODBUS application data unit is built by the client that initiates a MODBUS transaction.
The function indicates to the server what kind of action to perform. The MODBUS application
protocol establishes the format of a request initiated by a client.
The function code field of a MODBUS data unit is coded in one byte. Valid codes are in the
range of 1 ... 255 decimal (128 – 255 reserved for exception responses). When a message is
sent from a Client to a Server device the function code field tells the server what kind of
action to perform. Function code "0" is not valid.
Sub-function codes are added to some function codes to define multiple actions.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 10 – PAS 62030 © IEC:2004 (E)

The data field of messages sent from a client to server devices contains additional
information that the server uses to take the action defined by the function code. This can
include items like discrete and register addresses, the quantity of items to be handled, and
the count of actual data bytes in the field.
The data field may be nonexistent (of zero length) in certain kinds of requests, in this case
the server does not require any additional information. The function code alone specifies the
action.
If no error occurs related to the MODBUS function requested in a properly received MODBUS
ADU the data field of a response from a server to a client contains the data requested. If an
error related to the MODBUS function requested occurs, the field contains an exception code
that the server application can use to determine the next action to be taken.
For example a client can read the ON / OFF states of a group of discrete outputs or inputs or
it can read/write the data contents of a group of registers.
When the server responds to the client, it uses the function code field to indicate either a
normal (error-free) response or that some kind of error occurred (called an exception
response). For a normal response, the server simply echoes to the request the original
function code.

Function code Data Request

Client Server

Initiate request

Perform the action
Initiate the response

Receive the response
Function code Data Response

Figure 4 – MODBUS transaction (error free)

For an exception response, the server returns a code that is equivalent to the original
function code from the request PDU with its most significant bit set to logic 1.

Client Server

Initiate request

Error detected in the action
Initiate an error

Exception Function code Receive the response Exception code

Function code Data Request

Figure 5 – MODBUS transaction (exception response)

NOTE It is desirable to manage a time out in order not to indefinitely wait for an answer which will perhaps never
arrive.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 11 –

The size of the MODBUS PDU is limited by the size constraint inherited from the first
MODBUS implementation on Serial Line network (max. RS485 ADU = 256 bytes).
Therefore:
MODBUS PDU for serial line communication = 256 - Server adress (1 byte) - CRC (2
bytes) = 253 bytes.

Consequently:
RS232 / RS485 ADU = 253 bytes + Server adress (1 byte) + CRC (2 bytes) = 256 bytes.
TCP MODBUS ADU = 253 bytes + MBAP (7 bytes) = 260 bytes.

The MODBUS protocol defines three PDUs. They are :

• MODBUS Request PDU, mb_req_pdu
• MODBUS Response PDU, mb_rsp_pdu
• MODBUS Exception Response PDU, mb_excep_rsp_pdu

The mb_req_pdu is defined as:

mb_req_pdu = {function_code, request_data}, where
function_code = [1 byte] MODBUS function code corresponding to the desired

MODBUS function code or requested through the client API,
request_data = [n bytes] This field is function code dependent and usually

 contains information such as variable references,
 variable counts, data offsets, sub-function codes etc.

The mb_rsp_pdu is defined as:
 mb_rsp_pdu = {function_code, response_data}, where

function_code = [1 byte] MODBUS function code
response_data = [n bytes] This field is function code dependent and usually

 contains information such as variable references,
 variable counts, data offsets, sub-function codes, etc.

The mb_excep_rsp_pdu is defined as:
 mb_excep_rsp_pdu = {function_code, request_data}, where

exception-function_code = [1 byte] MODBUS function code + 0x80
exception_code = [1 byte] MODBUS Exception Code Defined in table

 "MODBUS Exception Codes" (see 1.7).

1.4.2 Data Encoding

• MODBUS uses a ‘big-Endian’ representation for addresses and data items. This means
that when a numerical quantity larger than a single byte is transmitted, the most
significant byte is sent first. So for example

 Register size value
 16 - bits 0x1234 the first byte sent is 0x12 then 0x34
NOTE For more details, see [1] in 1.1.2.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 12 – PAS 62030 © IEC:2004 (E)

1.4.3 MODBUS data model

MODBUS bases its data model on a series of tables that have distinguishing characteristics.
The four primary tables are:

Primary tables Object type Type of Comments

 Discretes Input Single bit Read-Only
This type of data can be provided by an I/O system.

Coils Single bit Read-Write
This type of data can be alterable by an application
program.

Input Registers 16-bit word Read-Only
This type of data can be provided by an I/O system

Holding Registers 16-bit word Read-Write
This type of data can be alterable by an application
program.

The distinctions between inputs and outputs, and between bit-addressable and word-
addressable data items, do not imply any application behavior. It is perfectly acceptable, and
very common, to regard all four tables as overlaying one another, if this is the most natural
interpretation on the target machine in question.
For each of the primary tables, the protocol allows individual selection of 65536 data items,
and the operations of read or write of those items are designed to span multiple consecutive
data items up to a data size limit which is dependent on the transaction function code.
It’s obvious that all the data handled via MODBUS (bits, registers) must be located in device
application memory. But physical address in memory should not be confused with data
reference. The only requirement is to link data reference with physical address.
MODBUS logical reference number, which are used in MODBUS functions, are unsigned
integer indices starting at zero.

• Implementation examples of MODBUS model
The examples below show two ways of organizing the data in device. There are different
organizations possible, but not all are described in this document. Each device can have its
own organization of the data according to its application

Example 1 : Device having 4 separate blocks
The example below shows data organization in a device having digital and analog, inputs and
outputs. Each block is separate because data from different blocks have no correlation. Each
block is thus accessible with different MODBUS functions.

Input Discrete

MODBUS access

Device application memory

MODBUS SERVER DEVICE

MODBUS RequestCoils

Input Registers

Holding
Registers

Figure 6 – MODBUS Data Model with separate block

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 13 –

Example 2: Device having only 1 block
In this example, the device has only 1 data block. The same data can be reached via several
MODBUS functions, either via a 16 bit access or via an access bit.

Device application memory

MODBUS SERVER DEVICE

MODBUS Request

Input Discrete

MODBUS access

Coils

Input Registers

Holding
Registers

R
W

R

W

Figure 7 – MODBUS Data Model with only 1 block

1.4.4 MODBUS Addressing model

The MODBUS application protocol defines precisely PDU addressing rules.

In a MODBUS PDU each data is addressed from 0 to 65535.
It also defines clearly a MODBUS data model composed of 4 blocks that comprises several
elements numbered from 1 to n.

In the MODBUS data Model each element within a data block is numbered from 1 to n.
Afterwards the MODBUS data model has to be bound to the device application (IEC-61131
object, or other application model).
The pre-mapping between the MODBUS data model and the device application is totally
vendor device specific.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 14 – PAS 62030 © IEC:2004 (E)

Discrete Input

Coils

Input Registers

Holding Registers

MODBUS data modelDevice application

1
.
.
.
1
.
5
.
1
2
.

MODBUS PDU addresses

1
.
.
55

Read Registers 54

Read Registers 1

Read coils 4

Read input 0

MODBUS StandardApplication specific
Mapping

Figure 8 – MODBUS Addressing model

The previous figure shows that a MODBUS data numbered X is addressed in the MODBUS
PDU X-1.

1.4.5 Define MODBUS Transaction

The following state diagram describes the generic processing of a MODBUS transaction in
server side.

NOTE In this PAS, a normal response is the function code its specific data.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 15 –

Validate function
code

Validate data
value

ExceptionCode_3

Wait for a MB
indication

ExceptionCode_2

ExeptionCode_1

Send Modbus
Exception
Response

ExceptionCode_4_5_6

Execute MB
function

Send Modbus
Response

Validate data
Address

ExceptionCode_3

ExceptionCode_2

ExeptionCode_1

ExceptionCode_4_5_6

[Invalid]

[Invalid]

[Invalid]

[valid]

[Invalid]

[Valid]

[valid]

[Valid]

[Receive MB indication]

Figure 9 – MODBUS Transaction state diagram

Once the request has been processed by a server, a MODBUS response using the
adequate MODBUS server transaction is built.
Depending on the result of the processing two types of response are built :

 A positive MODBUS response :
 the response function code = the request function code

 A MODBUS Exception response (see 1.7):

 the objective is to provide to the client relevant information concerning the
error detected during the processing ;

 the exception function code = the request function code + 0x80 ;
 an exception code is provided to indicate the reason of the error.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 16 – PAS 62030 © IEC:2004 (E)

1.5 Function Code Categories

There are three categories of MODBUS Functions codes. They are :

Public Function Codes

• Are well defined function codes ,
• guaranteed to be unique,
• validated by the MODBUS-IDA.org community,
• publicly documented
• have available conformance test,
• includes both defined public assigned function codes as well as unassigned function

codes reserved for future use.
User-Defined Function Codes

• there are two ranges of user-defined function codes, ie 65 to 72 and from 100 to 110
decimal.

• user can select and implement a function code that is not supported by the
specification.

• there is no guarantee that the use of the selected function code will be unique
• if the user wants to re-position the functionality as a public function code, he must

initiate an RFC to introduce the change into the public category and to have a new
public function code assigned.

• MODBUS Organization, Inc expressly reserves the right to develop the proposed
RFC.

Reserved Function Codes
• Function Codes currently used by some companies for legacy products and that

are not available for public use.
NOTE The reader should refer to Annex B: MODBUS RESERVED FUNCTION CODES, SUBCODES AND MEI TYPES.

 User Defined Function codes

1

65

100
110

72
 User Defined Function codes

PUBLIC function codes

PUBLIC function codes

PUBLIC function codes

127

Figure 10 – MODBUS Function Code Categories

NOTE This Figure 10 MODBUS Function Code Categories represents the range where reserved function codes
may reside.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 17 –

1.5.1 Public Function Code Definition

Function Codes
code Sub

code
(hex) Section

Physical Discrete
Inputs

Read Discrete Inputs 02 02 1.6.2

Read Coils 01 01 1.6.1
Write Single Coil 05 05 1.6.5
Write Multiple Coils 15 0F 1.6.11

Bit
access

Internal Bits
 Or

 Physical coils

Physical Input
Registers

Read Input Register 04 04 1.6.4

Read Holding Registers 03 03 1.6.3
Write Single Register 06 06 1.6.6
Write Multiple Registers 16 10 1.6.12
Read/Write Multiple Registers 23 17 1.6.17
Mask Write Register 22 16 1.6.16

16 bits
access Internal Registers

 Or
Physical Output

Registers
Read FIFO queue 24 18 1.6.18
Read File record 20 6 14 1.6.14

Data
Access

File record access Write File record 21 6 15 1.6.15
Read Exception status 07 07 1.6.7
Diagnostic 08 00-18,20 08 1.6.8
Get Com event counter 11 OB 1.6.9
Get Com Event Log 12 0C 1.6.10
Report Slave ID 17 11 1.6.13

Diagnostics

Read device Identification 43 14 2B 1.6.21
Other Encapsulated Interface

Transport
43 13,14 2B 1.6.19

 CANopen General Reference 43 13 2B 1.6.20

1.6 Function codes descripitons

1.6.1 01 (0x01) Read Coils

This function code is used to read from 1 to 2000 contiguous status of coils in a remote
device. The Request PDU specifies the starting address, ie the address of the first coil
specified, and the number of coils. In the PDU Coils are addressed starting at zero. Therefore
coils numbered 1-16 are addressed as 0-15.
The coils in the response message are packed as one coil per bit of the data field. Status is
indicated as 1= ON and 0= OFF. The LSB of the first data byte contains the output addressed
in the query. The other coils follow toward the high order end of this byte, and from low order
to high order in subsequent bytes.
If the returned output quantity is not a multiple of eight, the remaining bits in the final data
byte will be padded with zeros (toward the high order end of the byte). The Byte Count field
specifies the quantity of complete bytes of data.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 18 – PAS 62030 © IEC:2004 (E)

Request
Function code 1 Byte 0x01
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of coils 2 Bytes 1 to 2000 (0x7D0)

Response
Function code 1 Byte 0x01
Byte count 1 Byte N*
Coil Status n Byte n = N or N+1

*N = Quantity of Outputs / 8, if the remainder is different of 0 ⇒ N = N+1
Error

Function code 1 Byte Function code + 0x80
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete outputs 20–38:

Request Response
Field Name (Hex) Field Name (Hex)
Function 01 Function 01
Starting Address Hi 00 Byte Count 03
Starting Address Lo 13 Outputs status 27-20 CD
Quantity of Outputs Hi 00 Outputs status 35-28 6B
Quantity of Outputs Lo 13 Outputs status 38-36 05

The status of outputs 27–20 is shown as the byte value CD hex, or binary 1100 1101. Output
27 is the MSB of this byte, and output 20 is the LSB.
By convention, bits within a byte are shown with the MSB to the left, and the LSB to the right.
Thus the outputs in the first byte are ‘27 through 20’, from left to right. The next byte has
outputs ‘35 through 28’, left to right. As the bits are transmitted serially, they flow from LSB to
MSB: 20 . . . 27, 28 . . . 35, and so on.
In the last data byte, the status of outputs 38-36 is shown as the byte value 05 hex, or binary
0000 0101. Output 38 is in the sixth bit position from the left, and output 36 is the LSB of this
byte. The five remaining high order bits are zero filled.
NOTE The five remaining bits (toward the high order end) are zero filled.

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadDiscreteOutputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Outputs ≤ 0x07D0

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Outputs == OK

ExceptionCode = 04

Request Processing

Figure 11 – Read Coils state diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 19 –

1.6.2 02 (0x02) Read Discrete Inputs

This function code is used to read from 1 to 2000 contiguous status of discrete inputs in a
remote device. The Request PDU specifies the starting address, ie the address of the first
input specified, and the number of inputs. In the PDU Discrete Inputs are addressed starting
at zero. Therefore Discrete inputs numbered 1-16 are addressed as 0-15.
The discrete inputs in the response message are packed as one input per bit of the data field.
Status is indicated as 1= ON; 0= OFF. The LSB of the first data byte contains the input
addressed in the query. The other inputs follow toward the high order end of this byte, and
from low order to high order in subsequent bytes.
If the returned input quantity is not a multiple of eight, the remaining bits in the final data byte
will be padded with zeros (toward the high order end of the byte). The Byte Count field
specifies the quantity of complete bytes of data.

Request

Function code 1 Byte 0x02

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Inputs 2 Bytes 1 to 2000 (0x7D0)

Response

Function code 1 Byte 0x02

Byte count 1 Byte N*

Input Status N* x 1 Byte
*N = Quantity of Inputs / 8 if the remainder is different of 0 ⇒ N = N+1

Error
Error code 1 Byte 0x82

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete inputs 197 – 218:

Request Response
Field Name (Hex) Field Name (Hex)
Function 02 Function 02
Starting Address Hi 00 Byte Count 03
Starting Address Lo C4 Inputs Status 204-197 AC
Quantity of Inputs Hi 00 Inputs Status 212-205 DB
Quantity of Inputs Lo 16 Inputs Status 218-213 35

The status of discrete inputs 204–197 is shown as the byte value AC hex, or binary 1010
1100. Input 204 is the MSB of this byte, and input 197 is the LSB.
The status of discrete inputs 218–213 is shown as the byte value 35 hex, or binary 0011
0101. Input 218 is in the third bit position from the left, and input 213 is the LSB.
NOTE The two remaining bits (toward the high order end) are zero filled.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 20 – PAS 62030 © IEC:2004 (E)

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadDiscreteInputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Inputs ≤ 0x07D0

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Inputs == OK

ExceptionCode = 04

Request Processing

Figure 12 – Read Discrete Inputs state diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 21 –

1.6.3 03 (0x03) Read Holding Registers

This function code is used to read the contents of a contiguous block of holding registers in a
remote device. The Request PDU specifies the starting register address and the number of
registers. In the PDU Registers are addressed starting at zero. Therefore registers numbered
1-16 are addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the
binary contents right justified within each byte. For each register, the first byte contains the
high order bits and the second contains the low order bits.

Request

Function code 1 Byte 0x03
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 125 (0x7D)

Response

Function code 1 Byte 0x03
Byte count 1 Byte 2 x N*
Register value N* x 2 Bytes

*N = Quantity of Registers
Error

Error code 1 Byte 0x83
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read registers 108 – 110:

Request Response
Field Name (Hex) Field Name (Hex)
Function 03 Function 03
Starting Address Hi 00 Byte Count 06
Starting Address Lo 6B Register value Hi (108) 02
No. of Registers Hi 00 Register value Lo (108) 2B
No. of Registers Lo 03 Register value Hi (109) 00
 Register value Lo (109) 00
 Register value Hi (110) 00
 Register value Lo (110) 64

The contents of register 108 are shown as the two byte values of 02 2B hex, or 555 decimal.
The contents of registers 109–110 are 00 00 and 00 64 hex, or 0 and 100 decimal,
respectively.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 22 – PAS 62030 © IEC:2004 (E)

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Registers ≤ 0x007D

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 13 – Read Holding Registers state diagram

1.6.4 04 (0x04) Read Input Registers

This function code is used to read from 1 to approx. 125 contiguous input registers in a
remote device. The Request PDU specifies the starting register address and the number of
registers. In the PDU Registers are addressed starting at zero. Therefore input registers
numbered 1-16 are addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the
binary contents right justified within each byte. For each register, the first byte contains the
high order bits and the second contains the low order bits.
Request

Function code 1 Byte 0x04
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Input Registers 2 Bytes 0x0001 to 0x007D

Response

Function code 1 Byte 0x04
Byte count 1 Byte 2 x N*
Input Registers N* x 2 Bytes

*N = Quantity of Input Registers

Error

Error code 1 Byte 0x84
Exception code 1 Byte 01 or 02 or 03 or 04

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 23 –

Here is an example of a request to read input register 9:

Request Response
Field Name (Hex) Field Name (Hex)
Function 04 Function 04
Starting Address Hi 00 Byte Count 02
Starting Address Lo 08 Input Reg. 9 Hi 00
Quantity of Input Reg. Hi 00 Input Reg. 9 Lo 0A
Quantity of Input Reg. Lo 01

The contents of input register 9 are shown as the two byte values of 00 0A hex, or 10
decimal.

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadInputRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Registers ≤ 0x007D

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 14 – Read Input Registers state diagram

1.6.5 05 (0x05) Write Single Coil

This function code is used to write a single output to either ON or OFF in a remote device.
The requested ON/OFF state is specified by a constant in the request data field. A value of
FF 00 hex requests the output to be ON. A value of 00 00 requests it to be OFF. All other
values are illegal and will not affect the output.
The Request PDU specifies the address of the coil to be forced. Coils are addressed starting
at zero. Therefore coil numbered 1 is addressed as 0. The requested ON/OFF state is
specified by a constant in the Coil Value field. A value of 0XFF00 requests the coil to be ON.
A value of 0X0000 requests the coil to be off. All other values are illegal and will not affect
the coil.

The normal response is an echo of the request, returned after the coil state has been written.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 24 – PAS 62030 © IEC:2004 (E)

Request
Function code 1 Byte 0x05
Output Address 2 Bytes 0x0000 to 0xFFFF
Output Value 2 Bytes 0x0000 or 0xFF00

Response

Function code 1 Byte 0x05
Output Address 2 Bytes 0x0000 to 0xFFFF
Output Value 2 Bytes 0x0000 or 0xFF00

Error

Error code 1 Byte 0x85
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write Coil 173 ON:

Request Response
Field Name (Hex) Field Name (Hex)
Function 05 Function 05
Output Address Hi 00 Output Address Hi 00
Output Address Lo AC Output Address Lo AC
Output Value Hi FF Output Value Hi FF
Output Value Lo 00 Output Value Lo 00

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02

YES

NO

ExceptionCode = 03
YES

ENTRY

WriteSingleOutput == OK

MB Server Sends mb_rsp

NO

YES

Output Value == 0x0000
OR 0xFF00

Function code
supported

Output Address == OK

Request Processing

Figure 15 – Write Single Output state diagram

1.6.6 06 (0x06) Write Single Register

This function code is used to write a single holding register in a remote device.
The Request PDU specifies the address of the register to be written. Registers are addressed
starting at zero. Therefore register numbered 1 is addressed as 0.

The normal response is an echo of the request, returned after the register contents have
been written.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 25 –

Request
Function code 1 Byte 0x06
Register Address 2 Bytes 0x0000 to 0xFFFF
Register Value 2 Bytes 0x0000 or 0xFFFF

Response

Function code 1 Byte 0x06
Register Address 2 Bytes 0x0000 to 0xFFFF
Register Value 2 Bytes 0x0000 or 0xFFFF

Error

Error code 1 Byte 0x86
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write register 2 to 00 03 hex:

Request Response
Field Name (Hex) Field Name (Hex)
Function 06 Function 06
Register Address Hi 00 Register Address Hi 00
Register Address Lo 01 Register Address Lo 01
Register Value Hi 00 Register Value Hi 00
Register Value Lo 03 Register Value Lo 03

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02

YES

NO

ExceptionCode = 03
YES

ENTRY

WriteSingleRegister == OK

MB Server Sends mb_rsp

NO

YES

0x0000 ≤ Register Value ≤ 0xFFFF

Function code
supported

Register Address == OK

Request Processing

Figure 16 – Write Single Register state diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 26 – PAS 62030 © IEC:2004 (E)

1.6.7 07 (0x07) Read Exception Status (Serial Line only)

This function code is used to read the contents of eight Exception Status outputs in a remote
device.
The function provides a simple method for accessing this information, because the Exception
Output references are known (no output reference is needed in the function).
The normal response contains the status of the eight Exception Status outputs. The outputs
are packed into one data byte, with one bit per output. The status of the lowest output
reference is contained in the least significant bit of the byte.
The contents of the eight Exception Status outputs are device specific.
Request

Function code 1 Byte 0x07

Response

Function code 1 Byte 0x07
Output Data 1 Byte 0x00 to 0xFF

Error

Error code 1 Byte 0x87
Exception code 1 Byte 01 or 04

Here is an example of a request to read the exception status:

Request Response
Field Name (Hex) Field Name (Hex)
Function 07 Function 07
 Output Data 6D

In this example, the output data is 6D hex (0110 1101 binary). Left to right, the outputs are
OFF–ON–ON–OFF–ON–ON–OFF–ON. The status is shown from the highest to the lowest
addressed output.

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

ReadExceptionStatus == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 17 – Read Exception Status state diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 27 –

1.6.8 08 (0x08) Diagnostics (Serial Line only)

MODBUS function code 08 provides a series of tests for checking the communication system
between a client (Master) device and a server (Slave), or for checking various internal error
conditions within a server.
The function uses a two–byte sub-function code field in the query to define the type of test to
be performed. The server echoes both the function code and sub-function code in a normal
response. Some of the diagnostics cause data to be returned from the remote device in the
data field of a normal response.
In general, issuing a diagnostic function to a remote device does not affect the running of the
user program in the remote device. User logic, like discrete and registers, is not accessed by
the diagnostics. Certain functions can optionally reset error counters in the remote device.
A server device can, however, be forced into ‘Listen Only Mode’ in which it will monitor the
messages on the communications system but not respond to them. This can affect the
outcome of your application program if it depends upon any further exchange of data with the
remote device. Generally, the mode is forced to remove a malfunctioning remote device from
the communications system.

The following diagnostic functions are dedicated to serial line devices.

The normal response to the Return Query Data request is to loopback the same data. The
function code and sub-function codes are also echoed.
Request

Function code 1 Byte 0x08
Sub-function 2 Bytes
Data N x 2 Bytes

Response

Function code 1 Byte 0x08
Sub-function 2 Bytes
Data N x 2 Bytes

Error

Error code 1 Byte 0x88
Exception code 1 Byte 01 or 03 or 04

1.6.8.1 Sub-function codes supported by the serial line devices

Here the list of sub-function codes supported by the serial line devices. Each sub-function
code is then listed with an example of the data field contents that would apply for that
diagnostic.

Sub-function code
Hex Dec

Name

00 00 Return Query Data
01 01 Restart Communications Option
02 02 Return Diagnostic Register
03 03 Change ASCII Input Delimiter
04 04 Force Listen Only Mode
 05.. 09 RESERVED
0A 10 Clear Counters and Diagnostic Register
0B 11 Return Bus Message Count
0C 12 Return Bus Communication Error Count
0D 13 Return Bus Exception Error Count
0E 14 Return Slave Message Count
0F 15 Return Slave No Response Count
10 16 Return Slave NAK Count
11 17 Return Slave Busy Count
12 18 Return Bus Character Overrun Count
13 19 RESERVED
14 20 Clear Overrun Counter and Flag
N.A. 21 ...

65535
RESERVED

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 28 – PAS 62030 © IEC:2004 (E)

00 Return Query Data
The data passed in the request data field is to be returned (looped back) in the response. The
entire response message should be identical to the request.

Sub-function Data Field (Request) Data Field (Response)
00 00 Any Echo Request Data

01 Restart Communications Option
The remote device serial line port must be initialized and restarted, and all of its
communications event counters are cleared. If the port is currently in Listen Only Mode, no
response is returned. This function is the only one that brings the port out of Listen Only
Mode. If the port is not currently in Listen Only Mode, a normal response is returned. This
occurs before the restart is executed.
When the remote device receives the request, it attempts a restart and executes its power–up
confidence tests. Successful completion of the tests will bring the port online.
A request data field contents of FF 00 hex causes the port’s Communications Event Log to be
cleared also. Contents of 00 00 leave the log as it was prior to the restart.

Sub-function Data Field (Request) Data Field (Response)
00 01 00 00 Echo Request Data
00 01 FF 00 Echo Request Data

02 Return Diagnostic Register
The contents of the remote device’s 16–bit diagnostic register are returned in the response.

Sub-function Data Field (Request) Data Field (Response)
 00 02 00 00 Diagnostic Register Contents

03 Change ASCII Input Delimiter
The character ‘CHAR’ passed in the request data field becomes the end of message delimiter
for future messages (replacing the default LF character). This function is useful in cases of a
Line Feed is not required at the end of ASCII messages.

Sub-function Data Field (Request) Data Field (Response)
00 03 CHAR 00 Echo Request Data

04 Force Listen Only Mode
Forces the addressed remote device to its Listen Only Mode for MODBUS communications.
This isolates it from the other devices on the network, allowing them to continue
communicating without interruption from the addressed remote device. No response is
returned.
When the remote device enters its Listen Only Mode, all active communication controls are
turned off. The Ready watchdog timer is allowed to expire, locking the controls off. While the
device is in this mode, any MODBUS messages addressed to it or broadcast are monitored,
but no actions will be taken and no responses will be sent.
The only function that will be processed after the mode is entered will be the Restart
Communications Option function (function code 8, sub-function 1).

Sub-function Data Field (Request) Data Field (Response)
00 04 00 00 No Response Returned

10 (0A Hex) Clear Counters and Diagnostic Register
The goal is to clear all counters and the diagnostic register. Counters are also cleared upon
power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0A 00 00 Echo Request Data

11 (0B Hex) Return Bus Message Count
The response data field returns the quantity of messages that the remote device has detected
on the communications system since its last restart, clear counters operation, or power–up.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 29 –

Sub-function Data Field (Request) Data Field (Response)
00 0B 00 00 Total Message Count

12 (0C Hex) Return Bus Communication Error Count
The response data field returns the quantity of CRC errors encountered by the remote device
since its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0C 00 00 CRC Error Count

13 (0D Hex) Return Bus Exception Error Count
The response data field returns the quantity of MODBUS exception responses returned by the
remote device since its last restart, clear counters operation, or power–up.
Exception responses are described and listed in 1.7 .

Sub-function Data Field (Request) Data Field (Response)
00 0D 00 00 Exception Error Count

14 (0E Hex) Return Slave Message Count
The response data field returns the quantity of messages addressed to the remote device, or
broadcast, that the remote device has processed since its last restart, clear counters
operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0E 00 00 Slave Message Count

15 (0F Hex) Return Slave No Response Count
The response data field returns the quantity of messages addressed to the remote device for
which it has returned no response (neither a normal response nor an exception response),
since its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0F 00 00 Slave No Response Count

16 (10 Hex) Return Slave NAK Count
The response data field returns the quantity of messages addressed to the remote device for
which it returned a Negative Acknowledge (NAK) exception response, since its last restart,
clear counters operation, or power–up. Exception responses are described and listed in
section 1.7 .

Sub-function Data Field (Request) Data Field (Response)
00 10 00 00 Slave NAK Count

17 (11 Hex) Return Slave Busy Count
The response data field returns the quantity of messages addressed to the remote device for
which it returned a Slave Device Busy exception response, since its last restart, clear
counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 11 00 00 Slave Device Busy Count

18 (12 Hex) Return Bus Character Overrun Count
The response data field returns the quantity of messages addressed to the remote device that
it could not handle due to a character overrun condition, since its last restart, clear counters
operation, or power–up. A character overrun is caused by data characters arriving at the port
faster than they can be stored, or by the loss of a character due to a hardware malfunction.

Sub-function Data Field (Request) Data Field (Response)
00 12 00 00 Slave Character Overrun Count

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 30 – PAS 62030 © IEC:2004 (E)

20 (14 Hex) Clear Overrun Counter and Flag
Clears the overrun error counter and reset the error flag.

Sub-function Data Field (Request) Data Field (Response)
00 14 00 00 Echo Request Data

1.6.8.2 Example and state diagram

Here is an example of a request to remote device to Return Query Data. This uses a sub-
function code of zero (00 00 hex in the two–byte field). The data to be returned is sent in the
two–byte data field (A5 37 hex).

Request Response
Field Name (Hex) Field Name (Hex)
Function 08 Function 08
Sub-function Hi 00 Sub-function Hi 00
Sub-function Lo 00 Sub-function Lo 00
Data Hi A5 Data Hi A5
Data Lo 37 Data Lo 37

The data fields in responses to other kinds of queries could contain error counts or other data
requested by the sub-function code.

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

Diagnostic == OK

MB Server Sends mb_rsp

NO

YES

Function code supported
AND

Subfunction code supported

ExceptionCode = 03

Data Value == OK
NO

YES

Request Processing

Figure 18 – Diagnostic state diagram

1.6.9 11 (0x0B) Get Comm Event Counter (Serial Line only)

This function code is used to get a status word and an event count from the remote device's
communication event counter.
By fetching the current count before and after a series of messages, a client can determine
whether the messages were handled normally by the remote device.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 31 –

The device’s event counter is incremented once for each successful message completion. It is not
incremented for exception responses, poll commands, or fetch event counter commands.
The event counter can be reset by means of the Diagnostics function (code 08), with a sub-
function of Restart Communications Option (code 00 01) or Clear Counters and Diagnostic
Register (code 00 0A).
The normal response contains a two–byte status word, and a two–byte event count. The
status word will be all ones (FF FF hex) if a previously–issued program command is still being
processed by the remote device (a busy condition exists). Otherwise, the status word will be
all zeros.
Request

Function code 1 Byte 0x0B

Response

Function code 1 Byte 0x0B
Status 2 Bytes 0x0000 to 0xFFFF
Event Count 2 Bytes 0x0000 to 0xFFFF

Error

Error code 1 Byte 0x8B
Exception code 1 Byte 01 or 04

Here is an example of a request to get the communications event counter in remote device:

Request Response
Field Name (Hex) Field Name (Hex)
Function 0B Function 0B
 Status Hi FF
 Status Lo FF
 Event Count Hi 01
 Event Count Lo 08

In this example, the status word is FF FF hex, indicating that a program function is still in
progress in the remote device. The event count shows that 264 (01 08 hex) events have been
counted by the device.

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

GetCommEventCounter == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 19 – Get Comm Event Counter state diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 32 – PAS 62030 © IEC:2004 (E)

1.6.10 12 (0x0C) Get Comm Event Log (Serial Line only)

This function code is used to get a status word, event count, message count, and a field of
event bytes from the remote device.
The status word and event counts are identical to that returned by the Get Communications
Event Counter function (11, 0B hex).
The message counter contains the quantity of messages processed by the remote device
since its last restart, clear counters operation, or power–up. This count is identical to that
returned by the Diagnostic function (code 08), sub-function Return Bus Message Count (code
11, 0B hex).
The event bytes field contains 0-64 bytes, with each byte corresponding to the status of one
MODBUS send or receive operation for the remote device. The remote device enters the
events into the field in chronological order. Byte 0 is the most recent event. Each new byte
flushes the oldest byte from the field.
The normal response contains a two–byte status word field, a two–byte event count field, a
two–byte message count field, and a field containing 0-64 bytes of events. A byte count field
defines the total length of the data in these four fields.
Request

Function code 1 Byte 0x0C

Response

Function code 1 Byte 0x0C
Byte Count 1 Byte N*
Status 2 Bytes 0x0000 to 0xFFFF
Event Count 2 Bytes 0x0000 to 0xFFFF
Message Count 2 Bytes 0x0000 to 0xFFFF
Events (N-6) x 1 Byte

*N = Quantity of Events + 3 x 2 Bytes, (Length of Status, Event Count and Message Count)

Error

Error code 1 Byte 0x8C
Exception code 1 Byte 01 or 04

Here is an example of a request to get the communications event log in remote device:

Request Response
Field Name (Hex) Field Name (Hex)
Function 0C Function 0C
 Byte Count 08
 Status Hi 00
 Status Lo 00
 Event Count Hi 01
 Event Count Lo 08
 Message Count Hi 01
 Message Count Lo 21
 Event 0 20
 Event 1 00

In this example, the status word is 00 00 hex, indicating that the remote device is not
processing a program function. The event count shows that 264 (01 08 hex) events have
been counted by the remote device. The message count shows that 289 (01 21 hex)
messages have been processed.
The most recent communications event is shown in the Event 0 byte. Its content (20 hex)
show that the remote device has most recently entered the Listen Only Mode.
The previous event is shown in the Event 1 byte. Its contents (00 hex) show that the remote
device received a Communications Restart.

The layout of the response’s event bytes is described below.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 33 –

What the Event Bytes Contain
An event byte returned by the Get Communications Event Log function can be any one of four
types. The type is defined by bit 7 (the high–order bit) in each byte. It may be further defined
by bit 6. This is explained below.

• Remote device MODBUS Receive Event
The remote device stores this type of event byte when a query message is received. It
is stored before the remote device processes the message. This event is defined by
bit 7 set to logic ‘1’. The other bits will be set to a logic ‘1’ if the corresponding
condition is TRUE. The bit layout is:

Bit Contents
0 Not Used
1 Communication Error
2 Not Used
3 Not Used
4 Character Overrun
5 Currently in Listen Only Mode
6 Broadcast Received
7 1

• Remote device MODBUS Send Event
The remote device stores this type of event byte when it finishes processing a request
message. It is stored if the remote device returned a normal or exception response, or
no response. This event is defined by bit 7 set to a logic ‘0’, with bit 6 set to a ‘1’. The
other bits will be set to a logic ‘1’ if the corresponding condition is TRUE. The bit
layout is:

Bit Contents
0 Read Exception Sent (Exception Codes 1-3)
1 Slave Abort Exception Sent (Exception Code 4)
2 Slave Busy Exception Sent (Exception Codes 5-6)
3 Slave Program NAK Exception Sent (Exception Code 7)
4 Write Timeout Error Occurred
5 Currently in Listen Only Mode
6 1
7 0

• Remote device Entered Listen Only Mode
The remote device stores this type of event byte when it enters the Listen Only Mode.
The event is defined by a content of 04 hex.

• Remote device Initiated Communication Restart
The remote device stores this type of event byte when its communications port is
restarted. The remote device can be restarted by the Diagnostics function (code 08),
with sub-function Restart Communications Option (code 00 01).
That function also places the remote device into a ‘Continue on Error’ or ‘Stop on
Error’ mode. If the remote device is placed into ‘Continue on Error’ mode, the event
byte is added to the existing event log. If the remote device is placed into ‘Stop on
Error’ mode, the byte is added to the log and the rest of the log is cleared to zeros.
The event is defined by a content of zero.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 34 – PAS 62030 © IEC:2004 (E)

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

GetCommEventLog == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 20 – Get Comm Event Log state diagram

1.6.11 15 (0x0F) Write Multiple Coils

This function code is used to force each coil in a sequence of coils to either ON or OFF in a
remote device. The Request PDU specifies the coil references to be forced. Coils are
addressed starting at zero. Therefore coil numbered 1 is addressed as 0.
The requested ON/OFF states are specified by contents of the request data field. A logical '1'
in a bit position of the field requests the corresponding output to be ON. A logical '0' requests
it to be OFF.
The normal response returns the function code, starting address, and quantity of coils forced.
Request PDU

Function code 1 Byte 0x0F
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Outputs 2 Bytes 0x0001 to 0x07B0
Byte Count 1 Byte N*
Outputs Value N* x 1 Byte

*N = Quantity of Outputs / 8, if the remainder is different of 0 ⇒ N = N+1
Response PDU

Function code 1 Byte 0x0F
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Outputs 2 Bytes 0x0001 to 0x07B0

Error

Error code 1 Byte 0x8F
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write a series of 10 coils starting at coil 20:
The request data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary). The
binary bits correspond to the outputs in the following way:
Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1
Output: 27 26 25 24 23 22 21 20 – – – – – – 29 28
The first byte transmitted (CD hex) addresses outputs 27-20, with the least significant bit
addressing the lowest output (20) in this set.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 35 –

The next byte transmitted (01 hex) addresses outputs 29-28, with the least significant bit
addressing the lowest output (28) in this set. Unused bits in the last data byte should be
zero–filled.

Request Response
Field Name (Hex) Field Name (Hex)
Function 0F Function 0F
Starting Address Hi 00 Starting Address Hi 00
Starting Address Lo 13 Starting Address Lo 13
Quantity of Outputs Hi 00 Quantity of Outputs Hi 00
Quantity of Outputs Lo 0A Quantity of Outputs Lo 0A
Byte Count 02
Outputs Value Hi CD
Outputs Value Lo 01

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

WriteMultipleOutputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Outputs ≤ 0x07B0
AND

Byte Count = N*

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Outputs == OK

ExceptionCode = 04

*N = Quantity of Outputs / 8, if the
remainder is different of 0 ⇒ N = N+1

Request Processing

Figure 21 – Write Multiple Outputs state diagram

1.6.12 16 (0x10) Write Multiple registers

This function code is used to write a block of contiguous registers (1 to approx. 120 registers)
in a remote device.
The requested written values are specified in the request data field. Data is packed as two
bytes per register.
The normal response returns the function code, starting address, and quantity of registers
written.

Request

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 0x0001 to 0x0078
Byte Count 1 Byte 2 x N*
Registers Value N* x 2 Bytes value

*N = Quantity of Registers

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 36 – PAS 62030 © IEC:2004 (E)

Response
Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 123 (0x7B)

Error

Error code 1 Byte 0x90

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write two registers starting at 2 to 00 0A and 01 02 hex:

Request Response
Field Name (Hex) Field Name (Hex)
Function 10 Function 10
Starting Address Hi 00 Starting Address Hi 00
Starting Address Lo 01 Starting Address Lo 01
Quantity of Registers Hi 00 Quantity of Registers Hi 00
Quantity of Registers Lo 02 Quantity of Registers Lo 02
Byte Count 04
Registers Value Hi 00
Registers Value Lo 0A
Registers Value Hi 01
Registers Value Lo 02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

WriteMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Registers ≤ 0x007B
AND

Byte Count == Quantity of Registers x 2

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 22 – Write Multiple Registers state diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 37 –

1.6.13 17 (0x11) Report Slave ID (Serial Line only)

This function code is used to read the description of the type, the current status, and other
information specific to a remote device.
The format of a normal response is shown in the following example. The data contents are
specific to each type of device.
Request

Function code 1 Byte 0x11
Response

Function code 1 Byte 0x11
Byte Count 1 Byte
Slave ID device

specific

Run Indicator Status 1 Byte 0x00 = OFF, 0xFF = ON
Additional Data

Error
Error code 1 Byte 0x91
Exception code 1 Byte 01 or 04

Here is an example of a request to report the ID and status:

Request Response
Field Name (Hex) Field Name (Hex)
Function 11 Function 11
 Byte Count Device

Specific
 Slave ID Device

Specific
 Run Indicator Status 0x00 or 0xFF
 Additional Data Device

Specific

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

ReportSlaveID == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 23 – Report slave ID state diagram

1.6.14 20 / 6 (0x14 / 0x06) Read File Record

This function code is used to perform a file record read. All Request Data Lengths are
provided in terms of number of bytes and all Record Lengths are provided in terms of
registers.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to
9999 decimal or 0X0000 to 0X270F. For example, record 12 is addressed as 12.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 38 – PAS 62030 © IEC:2004 (E)

The function can read multiple groups of references. The groups can be separating (non-
contiguous), but the references within each group must be sequential.
Each group is defined in a separate ‘sub-request’ field that contains 7 bytes:

The reference type: 1 byte (must be specified as 6)
The File number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be read: 2 bytes.

The quantity of registers to be read, combined with all other fields in the expected response,
must not exceed the allowable length of the MODBUS PDU : 253 bytes.
The normal response is a series of ‘sub-responses’, one for each ‘sub-request’. The byte
count field is the total combined count of bytes in all ‘sub-responses’. In addition, each ‘sub-
response’ contains a field that shows its own byte count.
Request

Function code 1 Byte 0x14
Byte Count 1 Byte 0x07 to 0xF5 bytes
Sub-Req. x, Reference Type 1 Byte 06
Sub-Req. x, File Number 2 Bytes 0x0000 to 0xFFFF
Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F
Sub-Req. x, Register Length 2 Bytes N
Sub-Req. x+1, ...

Response
Function code 1 Byte 0x14
Resp. data Length 1 Byte 0x07 to 0xF5
Sub-Req. x, File Resp. length 1 Byte 0x07 to 0xF5
Sub-Req. x, Reference Type 1 Byte 6
Sub-Req. x, Record Data N x 2 Bytes
Sub-Req. x+1, ...

Error
Error code 1 Byte 0x94
Exception code 1 Byte 01 or 02 or 03 or 04 or

08

Here is an example of a request to read two groups of references from remote device:

 Group 1 consists of two registers from file 4, starting at register 1 (address 0001).
 Group 2 consists of two registers from file 3, starting at register 9 (address 0009).

Request Response
Field Name (Hex) Field Name (Hex)
Function 14 Function 14
Byte Count 0E Resp. Data length 0C
Sub-Req. 1, Ref. Type 06 Sub-Req. 1, File resp. length 05
Sub-Req. 1, File Number Hi 00 Sub-Req. 1, Ref. Type 06
Sub-Req. 1, File Number Lo 04 Sub-Req. 1, Record. Data Hi 0D
Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Record. Data Lo FE
Sub-Req. 1, Record number Lo 01 Sub-Req. 1, Record. Data Hi 00
Sub-Req. 1, Record Length Hi 00 Sub-Req. 1, Record. Data Lo 20
Sub-Req. 1, Record Length Lo 02 Sub-Req. 2, File resp. length 05
Sub-Req. 2, Ref. Type 06 Sub-Req. 2, Ref. Type 06
Sub-Req. 2, File Number Hi 00 Sub-Req. 2, Record. Data Hi 33
Sub-Req. 2, File Number Lo 03 Sub-Req. 2, Record. Data Lo CD
Sub-Req. 2, Record number Hi 00 Sub-Req. 2, Record. Data Hi 00
Sub-Req. 2, Record number Lo 09 Sub-Req. 2, Record. Data Lo 40
Sub-Req. 2, Record Length Hi 00
Sub-Req. 2, Record Length Lo 02

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 39 –

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03

YES

ENTRY

ReadGeneralReference == OK

MB Server Sends mb_rsp

NO

YES

0x07 ≤ Byte Count ≤ 0xF5

Function code
supported

Reference Type == OK
AND

File Number == OK
AND

Record number == OK
AND

Starting Address + Register length == OK

ExceptionCode = 04

Request Processing

For each Sub-Req

Figure 24 – Read File Record state diagram

1.6.15 21 / 6 (0x15 / 0x06) Write File Record

This function code is used to perform a file record write. All Request Data Lengths are
provided in terms of number of bytes and all Record Lengths are provided in terms of the
number of 16-bit words.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to
9999 decimal or 0X0000 to 0X270F. For example, record 12 is addressed as 12.
The function can write multiple groups of references. The groups can be separate, ie non–
contiguous, but the references within each group must be sequential.
Each group is defined in a separate ‘sub-request’ field that contains 7 bytes plus the data:

The reference type: 1 byte (must be specified as 6)
The file number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be written: 2 bytes
The data to be written: 2 bytes per register.

The quantity of registers to be written, combined with all other fields in the request, must not
exceed the allowable length of the MODBUS PDU : 253bytes.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 40 – PAS 62030 © IEC:2004 (E)

The normal response is an echo of the request.
Request

Function code 1 Byte 0x15
Request data length 1 Byte 0x07 to 0xF5
Sub-Req. x, Reference Type 1 Byte 06
Sub-Req. x, File Number 2 Bytes 0x0000 to 0xFFFF
Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F
Sub-Req. x, Record length 2 Bytes N
Sub-Req. x, Record data N x 2 Bytes
Sub-Req. x+1, ...

Response

Function code 1 Byte 0x15

Response Data length 1 Byte

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0000 to 0xFFFFF

Sub-Req. x, Record number 2 Bytes 0x0000 to 0xFFFFF

Sub-Req. x, Record length 2 Bytes 0x0000 to 0xFFFFF N

Sub-Req. x, Record Data N x 2 Bytes

Sub-Req. x+1, ...

Error

Error code 1 Byte 0x95

Exception code 1 Byte 01 or 02 or 03 or 04 or 08

Here is an example of a request to write one group of references into remote device:
 The group consists of three registers in file 4, starting at register 7 (address 0007).

Request Response
Field Name (Hex) Field Name (Hex)
Function 15 Function 15
Request Data length 0D Request Data length 0D
Sub-Req. 1, Ref. Type 06 Sub-Req. 1, Ref. Type 06
Sub-Req. 1, File Number Hi 00 Sub-Req. 1, File Number Hi 00
Sub-Req. 1, File Number Lo 04 Sub-Req. 1, File Number Lo 04
Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Record number Hi 00
Sub-Req. 1, Record number Lo 07 Sub-Req. 1, Record number

Lo
07

Sub-Req. 1, Record length Hi 00 Sub-Req. 1, Record length Hi 00
Sub-Req. 1, Record length Lo 03 Sub-Req. 1, Record length Lo 03
Sub-Req. 1, Record Data Hi 06 Sub-Req. 1, Record Data Hi 06
Sub-Req. 1, Record Data Lo AF Sub-Req. 1, Record Data Lo AF
Sub-Req. 1, Record Data Hi 04 Sub-Req. 1, Record Data Hi 04
Sub-Req. 1, Record Data Lo BE Sub-Req. 1, Record Data Lo BE
Sub-Req. 1, Record Data Hi 10 Sub-Req. 1, Record Data Hi 10
Sub-Req. 1, Reg. Data Lo 0D Sub-Req. 1, Reg. Data Lo 0D

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 41 –

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03

YES

ENTRY

WriteGeneralReference == OK

MB Server Sends mb_rsp

NO

YES

0x07 ≤ Byte Count ≤ 0xF5

Function code
supported

Reference Type == OK
AND

File Number == OK
AND

Record number == OK
AND

Starting Address + Register length == OK

ExceptionCode = 04

Request Processing

For each Sub-Req

Figure 25 – Write File Record state diagram

1.6.16 22 (0x16) Mask Write Register

This function code is used to modify the contents of a specified holding register using a
combination of an AND mask, an OR mask, and the register's current contents. The function
can be used to set or clear individual bits in the register.
The request specifies the holding register to be written, the data to be used as the AND
mask, and the data to be used as the OR mask. Registers are addressed starting at zero.
Therefore registers 1-16 are addressed as 0-15.
The function’s algorithm is:
Result = (Current Contents AND And_Mask) OR (Or_Mask AND (NOT And_Mask))
For example:

 Hex Binary
Current Contents = 12 0001 0010
And_Mask = F2 1111 0010
Or_Mask = 25 0010 0101

(NOT And_Mask) = 0D 0000 1101

Result = 17 0001 0111

NOTE 1 That if the Or_Mask value is zero, the result is simply the logical ANDing of the current contents and
And_Mask. If the And_Mask value is zero, the result is equal to the Or_Mask value.

NOTE 2 The contents of the register can be read with the Read Holding Registers function (function code 03).
They could, however, be changed subsequently as the controller scans its user logic program.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 42 – PAS 62030 © IEC:2004 (E)

The normal response is an echo of the request. The response is returned after the register
has been written.
Request

Function code 1 Byte 0x16
Reference Address 2 Bytes 0x0000 to 0xFFFF
And_Mask 2 Bytes 0x0000 to 0xFFFF
Or_Mask 2 Bytes 0x0000 to 0xFFFF

Response

Function code 1 Byte 0x16
Reference Address 2 Bytes 0x0000 to 0xFFFF
And_Mask 2 Bytes 0x0000 to 0xFFFF
Or_Mask 2 Bytes 0x0000 to 0xFFFF

Error

Error code 1 Byte 0x96
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a Mask Write to register 5 in remote device, using the above mask
values.

Request Response
Field Name (Hex) Field Name (Hex)
Function 16 Function 16
Reference address Hi 00 Reference address Hi 00
Reference address Lo 04 Reference address Lo 04
And_Mask Hi 00 And_Mask Hi 00
And_Mask Lo F2 And_Mask Lo F2
Or_Mask Hi 00 Or_Mask Hi 00
Or_Mask Lo 25 Or_Mask Lo 25

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO
ExceptionCode = 02

YES

NO

ExceptionCode = 03

YES

ENTRY

MaskWriteRegister == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

ExceptionCode = 04

Request Processing

Reference Address == OK

AND_Mask == OK
AND

OR_Mask == OK

Figure 26 – Mask Write Holding Register state diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 43 –

1.6.17 23 (0x17) Read/Write Multiple registers

This function code performs a combination of one read operation and one write operation in a
single MODBUS transaction. The write operation is performed before the read.
Holding registers are addressed starting at zero. Therefore holding registers 1-16 are
addressed in the PDU as 0-15.
The request specifies the starting address and number of holding registers to be read as well
as the starting address, number of holding registers, and the data to be written. The byte
count specifies the number of bytes to follow in the write data field.
The normal response contains the data from the group of registers that were read. The byte
count field specifies the quantity of bytes to follow in the read data field.

Request

Function code 1 Byte 0x17
Read Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity to Read 2 Bytes 0x0001 to approx. 0x0076
Write Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity to Write 2 Bytes 0x0001 to approx. 0X0076
Write Byte Count 1 Byte 2 x N*
Write Registers Value N*x 2 Bytes

*N = Quantity to Write

Response

Function code 1 Byte 0x17
Byte Count 1 Byte 2 x N'*
Read Registers value N'* x 2 Bytes

*N' = Quantity to Read

Error

Error code 1 Byte 0x97
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read six registers starting at register 4, and to write three
registers starting at register 15:

Request Response
Field Name (Hex) Field Name (Hex)
Function 17 Function 17
Read Starting Address Hi 00 Byte Count 0C
Read Starting Address Lo 03 Read Registers value Hi 00
Quantity to Read Hi 00 Read Registers value Lo FE
Quantity to Read Lo 06 Read Registers value Hi 0A
Write Starting Address Hi 00 Read Registers value Lo CD
Write Starting address Lo 0E Read Registers value Hi 00
Quantity to Write Hi 00 Read Registers value Lo 01
Quantity to Write Lo 03 Read Registers value Hi 00
Write Byte Count 06 Read Registers value Lo 03
Write Registers Value Hi 00 Read Registers value Hi 00
Write Registers Value Lo FF Read Registers value Lo 0D
Write Registers Value Hi 00 Read Registers value Hi 00
Write Registers Value Lo FF Read Registers value Lo FF
Write Registers Value Hi 00
Write Registers Value Lo FF

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 44 – PAS 62030 © IEC:2004 (E)

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

Read/WriteMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Read ≤ 0x007D
AND

0x0001 ≤ Quantity of Write ≤ 0x0079
AND

Byte Count == Quantity of Write x 2

Function code
supported

 Read Starting Address == OK
AND

Read Starting Address + Quantity of Read == OK
AND

Write Starting Address == OK
AND

Write Starting Address + Quantity of Write == OK

ExceptionCode = 04

Request Processing
Write operation before read operation

Figure 27 – Read/Write Multiple Registers state diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 45 –

1.6.18 24 (0x18) Read FIFO Queue

This function code allows to read the contents of a First-In-First-Out (FIFO) queue of register
in a remote device. The function returns a count of the registers in the queue, followed by the
queued data. Up to 32 registers can be read: the count, plus up to 31 queued data registers.
The queue count register is returned first, followed by the queued data registers.
The function reads the queue contents, but does not clear them.
In a normal response, the byte count shows the quantity of bytes to follow, including the
queue count bytes and value register bytes (but not including the error check field).
The queue count is the quantity of data registers in the queue (not including the count
register).
If the queue count exceeds 31, an exception response is returned with an error code of 03
(Illegal Data Value).

Request

Function code 1 Byte 0x18
FIFO Pointer Address 2 Bytes 0x0000 to 0xFFFF

Response

Function code 1 Byte 0x18
Byte Count 2 Bytes
FIFO Count 2 Bytes ≤ 31
FIFO Value Register N* x 2 Bytes

*N = FIFO Count
Error

Error code 1 Byte 0x98
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of Read FIFO Queue request to remote device. The request is to read the
queue starting at the pointer register 1246 (0x04DE):

Request Response
Field Name (Hex) Field Name (Hex)
Function 18 Function 18
FIFO Pointer Address Hi 04 Byte Count Hi 00
FIFO Pointer Address Lo DE Byte Count Lo 06

 FIFO Count Hi 00
 FIFO Count Lo 02
 FIFO Value Register Hi 01
 FIFO Value Register Lo B8
 FIFO Value Register Hi 12
 FIFO Value Register Lo 84

In this example, the FIFO pointer register (1246 in the request) is returned with a queue count
of 2. The two data registers follow the queue count. These are:
1247 (contents 440 decimal -- 0x01B8); and 1248 (contents 4740 -- 0x1284).

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 46 – PAS 62030 © IEC:2004 (E)

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 03
YES

NO

ExceptionCode = 02
YES

ENTRY

ReadFIFOQueue == OK

MB Server Sends mb_rsp

NO

YES

0x0000 ≤ FIFO Pointer Address ≤ 0xFFFF

Function code
supported

ExceptionCode = 04

FIFO Count ≤ 31

Request Processing

Figure 28 – Read FIFO Queue state diagram

1.6.19 43 (0x2B) Encapsulated Interface Transport
NOTE The user should refer to Annex B: MODBUS RESERVED FUNCTION CODES, SUBCODES AND MEI
TYPES.

Function Code 43 and its MEI Type 14 for Device Identification is one of two Encapsulated
Interface Transport currently available in this PAS. The following function codes and MEI
Types shall not be part of the IEC published Specification derived from this PAS and these
function codes and MEI Types are specifically reserved: 43/0-12 and 43/15-255.

The MODBUS Encapsulated Interface (MEI)Transport is a mechanism for tunneling service
requests and method invocations, as well as their returns, inside MODBUS PDUs.
The primary feature of the MEI Transport is the encapsulation of method invocations or
service requests that are part of a defined interface as well as method invocation returns or
service responses.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 47 –

Network Interface

MEI Transport (FC 43)

Interface X
Client Interface

Interface Y
Client Interface

Client Application

MEI Type X MEI Type Y

Network Interface

MEI Transport (FC 43)

Interface X
Server Interface

Interface Y
Server Interface

Application X
Interface Backend

MEI Type X MEI Type Y

Application Y
Interface Backend

Network

Figure 29 – MODBUS encapsulated Interface Transport

The Network Interface can be any communication stack used to send MODBUS PDUs, such
as TCP/IP, or serial line.
A MEI Type is a MODBUS Assigned Number and therefore will be unique, the value between
0 to 255 are Reserved according to Annex B except for MEI Type 13 and MEI Type 14.
The MEI Type is used by MEI Transport implementations to dispatch a method invocation to
the indicated interface.
Since the MEI Transport service is interface agnostic, any specific behavior or policy required
by the interface must be provided by the interface, e.g. MEI transaction processing, MEI
interface error handling, etc.

Request

Function code 1 Byte 0x2B
MEI Type* 1 Byte 0x0E
MEI type specific data n Bytes

* MEI = MODBUS Encapsulated Interface
Response

Function code 1 Byte 0x2B
MEI Type 1 byte 0x0E
MEI type specific data n Bytes

Error

Function code 1 Byte 0xAB :
Fc 0x2B + 0x80

MEI Type 1 Byte 0x0E
Exception code 1 Byte 01, 02, 03, 04

As an example see Read device identification request.

1.6.20 43 / 13 (0x2B / 0x0D) CANopen General Reference Request and Response PDU

The CANopen General reference Command is an encapsulation of the services that will be
used to access (read from or write to) the entries of a CAN-Open Device Object Dictionary as
well as controlling and monitoring the server device, the CANopen system, and devices.

The MEI Type 13 (0x0D) is a MODBUS Assigned Number licensed to CiA for the CANopen
General Reference.

The system is intended to work within the limitations of existing MODBUS networks.
Therefore, the information needed to query or modify the object dictionaries in the system is

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 48 – PAS 62030 © IEC:2004 (E)

mapped into the format of a MODBUS message. The command will have the 256 Byte
limitation in both the Request and the Response message.

Informative: Please refere to Annex C for a reference to a specification that provides
information on MEI Type 13.

1.6.21 43 / 14 (0x2B / 0x0E) Read Device Identification

This function code allows reading the identification and additional information relative to the
physical and functional description of a remote device, only.
The Read Device Identification interface is modeled as an address space composed of a set
of addressable data elements. The data elements are called objects and an object Id
identifies them.
The interface consists of 3 categories of objects :

 Basic Device Identification. All objects of this category are mandatory : VendorName,
Product code, and revision number.

 Regular Device Identification. In addition to Basic data objects, the device provides
additional and optional identification and description data objects. All of the objects of
this category are defined in the standard but their implementation is optional .

 Extended Device Identification. In addition to regular data objects, the device provides
additional and optional identification and description private data about the physical
device itself. All of these data are device dependent.

Object

Id
Object Name / Description Type M/O category

0x00 VendorName ASCII String Mandatory
 0x01 ProductCode ASCII String Mandatory

0x02 MajorMinorRevision ASCII String Mandatory

Basic

0x03 VendorUrl ASCII String Optional
0x04 ProductName ASCII String Optional
0x05 ModelName ASCII String Optional
0x06 UserApplicationName ASCII String Optional
0x07

…
0x7F

Reserved

 Optional

Regular

0x80
…

0xFF

Private objects may be optionally
defined.
The range [0x80 – 0xFF] is Product
dependant.

device
dependant

Optional Extended

Request

Function code 1 Byte 0x2B
MEI Type* 1 Byte 0x0E
Read Device ID code 1 Byte 01 / 02 / 03 / 04
Object Id 1 Byte 0x00 to 0xFF

* MEI = MODBUS Encapsulated Interface
Response

Function code 1 Byte 0x2B
MEI Type 1 byte 0x0E
Read Device ID code 1 Byte 01 / 02 / 03 / 04
Conformity level 1 Byte
More Folows 1 Byte 00 / FF
Next Object Id 1 Byte Object ID number
Number of objects 1 Byte
List Of

Object ID 1 Byte
Object length 1 Byte
Object Value Object length Depending on the object ID

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 49 –

Error
Function code 1 Byte 0xAB :

Fc 0x2B + 0x80
MEI Type 1 Byte 0x0E
Exception code 1 Byte 01, 02, 03, 04

Request parameters description :
A MODBUS Encapsulated Interface assigned number 14 identifies the Read identification
request.
The paremeter " Read Device ID code " allows to define four access types :

01: request to get the basic device identification (stream access)
02: request to get the regular device identification (stream access)
03: request to get the extended device identification (stream access)
04: request to get one specific identification object (individual access)

An exception code 03 is sent back in the response if the Read device ID code is illegal.
In case of a response that does not fit into a single response, several transactions
(request/response) must be done. The Object Id byte gives the identification of the first
object to obtain. For the first transaction, the client must set the Object Id to 0 to obtain
the beginning of the device identification data. For the following transactions, the client
must set the Object Id to the value returned by the server in its previous response.
Remark : An object is indivisible, therefore any object must have a size consistent with
the size of transaction response.

If the Object Id does not match any known object, the server responds as if object 0 were
pointed out (restart at the beginning).

 In case of an individual access: ReadDevId code 04, the Object Id in the request gives
the identification of the object to obtain, and if the Object Id doesn't match to any known
object, the server returns an exception response with exception code = 02 (Illegal data
address).
If the server device is asked for a description level (readDevice Code) higher that its
conformity level , It must respond in accordance with its actual conformity level.

Response parameter description :
Function code : Function code 43 (decimal) 0x2B (hex)
MEI Type 14 (0x0E) MEI Type assigned number for Device Identification

Interface
ReadDevId code : Same as request ReadDevId code : 01, 02, 03 or 04
Conformity Level Identification conformity level of the device and type of supported

access
01 : basic identification (stream access only)
02 : regular identification (stream access only)
03 : extended identification (stream access only)
81 : basic identification (stream access and individual access)
82 : regular identification (stream access and individual access)
83 : extended identification (stream access and individual access)

More Follows In case of ReadDevId codes 01, 02 or 03 (stream access),
If the identification data doesn't fit into a single response, several
request/response transactions may be required.
00 : no more Object are available
FF : other identification Object are available and further MODBUS
transactions are required
In case of ReadDevId code 04 (individual access),
this field must be set to 00.

Next Object Id If "MoreFollows = FF", identification of the next Object to be
asked for.
If "MoreFollows = 00", must be set to 00 (useless)

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 50 – PAS 62030 © IEC:2004 (E)

Number Of Objects Number of identification Object returned in the response
(for an individual access, Number Of Objects = 1)

Object0.Id Identification of the first Object returned in the PDU (stream
access) or the requested Object (individual access)

Object0.Length Length of the first Object in byte
Object0.Value Value of the first Object (Object0.Length bytes)
…
ObjectN.Id Identification of the last Object (within the response)
ObjectN.Length Length of the last Object in byte
ObjectN.Value Value of the last Object (ObjectN.Length bytes)

Example of a Read Device Identification request for "Basic device identification" : In
this example all information are sent in one response PDU.

Request Response
Field Name Value Field Name Value
Function 2B Function 2B

 MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 00 Conformity Level 01
 More Follows 00
 NextObjectId 00
 Number Of Objects 03
 Object Id 00
 Object Length 16
 Object Value " Company identification"
 Object Id 01
 Object Length 0D
 Object Value " Product code XX"
 Object Id 02
 Object Length 05
 Object Value "V2.11"

In case of a device that required several transactions to send the response the following
transactions is intiated.
First transaction :

Request Response
Field Name Value Field Name Value
Function 2B Function 2B

 MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 00 Conformity Level 01
 More Follows FF
 NextObjectId 02
 Number Of Objects 03
 Object Id 00
 Object Length 16
 Object Value " Company identification"
 Object Id 01
 Object Length 1C
 Object Value " Product code

XXXXXXXXXXXXXXXX"

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 51 –

Second transaction :

Request Response
Field Name Value Field Name Value
Function 2B Function 2B

 MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 02 Conformity Level 01
 More Follows 00
 NextObjectId 00
 Number Of Objects 03
 Object Id 02
 Object Length 05
 Object Value "V2.11"

NO
YES

MB Server Sends
mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptiCode = 01

YES

NO

More follows = FF
Next Object ID = XX

NO

Except.Code = 02 YES

ENTRY

MB Server Sends mb_rsp

NO

Object Id OK

Function code
supported

Segmentation required

Request Processing

More follows = 00
Next Object ID = 00

Read deviceId Code OK

Except. Code =03

Figure 30 – Read Device Identification state diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 52 – PAS 62030 © IEC:2004 (E)

1.7 MODBUS Exception Responses

When a client device sends a request to a server device it expects a normal response. One
of four possible events can occur from the master’s query:

• If the server device receives the request without a communication error, and can
handle the query normally, it returns a normal response.

• If the server does not receive the request due to a communication error, no response
is returned. The client program will eventually process a timeout condition for the
request.

• If the server receives the request, but detects a communication error (parity, LRC,
CRC, ...), no response is returned. The client program will eventually process a
timeout condition for the request.

• If the server receives the request without a communication error, but cannot handle it
(for example, if the request is to read a non–existent output or register), the server
will return an exception response informing the client of the nature of the error.

The exception response message has two fields that differentiate it from a normal response:
Function Code Field: In a normal response, the server echoes the function code of the
original request in the function code field of the response. All function codes have a most–
significant bit (MSB) of 0 (their values are all below 80 hexadecimal). In an exception
response, the server sets the MSB of the function code to 1. This makes the function code
value in an exception response exactly 80 hexadecimal higher than the value would be for a
normal response.
With the function code’s MSB set, the client's application program can recognize the
exception response and can examine the data field for the exception code.
Data Field: In a normal response, the server may return data or statistics in the data field
(any information that was requested in the request). In an exception response, the server
returns an exception code in the data field. This defines the server condition that caused the
exception.

Example of a client request and server exception response

Request Response
Field Name (Hex) Field Name (Hex)
Function 01 Function 81
Starting Address Hi 04 Exception Code 02
Starting Address Lo A1
Quantity of Outputs Hi 00
Quantity of Outputs Lo 01

In this example, the client addresses a request to server device. The function code (01) is
for a Read Output Status operation. It requests the status of the output at address 1245
(04A1 hex). Note that only that one output is to be read, as specified by the number of
outputs field (0001).
If the output address is non–existent in the server device, the server will return the
exception response with the exception code shown (02). This specifies an illegal data
address for the slave.

A listing of exception codes begins on the next page.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 53 –

MODBUS Exception Codes
Code Name Meaning
01 ILLEGAL FUNCTION The function code received in the query is not an

allowable action for the server (or slave). This may be
because the function code is only applicable to newer
devices, and was not implemented in the unit
selected. It could also indicate that the server (or
slave) is in the wrong state to process a request of
this type, for example because it is unconfigured and
is being asked to return register values.

02 ILLEGAL DATA ADDRESS The data address received in the query is not an
allowable address for the server (or slave). More
specifically, the combination of reference number and
transfer length is invalid. For a controller with 100
registers, a request with offset 96 and length 4 would
succeed, a request with offset 96 and length 5 will
generate exception 02.

03 ILLEGAL DATA VALUE A value contained in the query data field is not an
allowable value for server (or slave). This indicates a
fault in the structure of the remainder of a complex
request, such as that the implied length is incorrect. It
specifically does NOT mean that a data item submitted
for storage in a register has a value outside the
expectation of the application program, since the
MODBUS protocol is unaware of the significance of any
particular value of any particular register.

04 SLAVE DEVICE FAILURE An unrecoverable error occurred while the server (or
slave) was attempting to perform the requested action.

05 ACKNOWLEDGE Specialized use in conjunction with programming
commands.
The server (or slave) has accepted the request and is
processing it, but a long duration of time will be
required to do so. This response is returned to
prevent a timeout error from occurring in the client (or
master). The client (or master) can next issue a Poll
Program Complete message to determine if
processing is completed.

06 SLAVE DEVICE BUSY Specialized use in conjunction with programming
commands.
The server (or slave) is engaged in processing a
long–duration program command. The client (or
master) should retransmit the message later when
the server (or slave) is free.

08 MEMORY PARITY ERROR Specialized use in conjunction with function codes 20
and 21 and reference type 6, to indicate that the
extended file area failed to pass a consistency check.
The server (or slave) attempted to read record file,
but detected a parity error in the memory. The client
(or master) can retry the request, but service may be
required on the server (or slave) device.

0A GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways,
indicates that the gateway was unable to allocate an
internal communication path from the input port to the
output port for processing the request. Usually means
that the gateway is misconfigured or overloaded.

0B GATEWAY TARGET DEVICE
FAILED TO RESPOND

Specialized use in conjunction with gateways,
indicates that no response was obtained from the
target device. Usually means that the device is not
present on the network.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 54 – PAS 62030 © IEC:2004 (E)

Annex A of Section 1
(informative)

MODBUS MESSAGING ON TCP/IP IMPLEMENTATION GUIDE

A.1 INTRODUCTION

A.1.1 OBJECTIVES
The objective of this document is to present the MODBUS messaging service over
TCP/IP , in order to provide reference information that helps software developers to
implement this service. The encoding of all MODBUS function codes are not described
in this document, for this information please read Part of this Specification.

This document gives accurate and comprehensive description of a MODBUS messaging
service implementation. Its purpose is to facilitate the interoperability between the
devices using the MODBUS messaging service.

This document comprises mainly three parts:
• An overview of the MODBUS over TCP/IP protocol
• A functional description of a MODBUS client, server and gateway

implementation
• An implementation guideline that proposes the object model of an MODBUS

implementation example.

A.1.2 CLIENT / SERVER MODEL
The MODBUS messaging service provides a Client/Server communication between
devices connected on an Ethernet TCP/IP network.
This client / server model is based on four type of messages:

• MODBUS Request,
• MODBUS Confirmation,
• MODBUS Indication,
• MODBUS Response

MODBUS Client MODBUS Server

Request Indication

ResponseConfirmation

A MODBUS Request is the message sent on the network by the Client to initiate a transaction,

A MODBUS Indication is the Request message received on the Server side,

A MODBUS Response is the Response message sent by the Server,

A MODBUS Confirmation is the Response Message received on the Client side

The MODBUS messaging services (Client / Server Model) are used for real time
information exchange:

• between two device applications,
• between device application and other device,
• between HMI/SCADA applications and devices,
• between a PC and a device program providing on line services.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 55 –

A.1.3 REFERENCE DOCUMENTS

Before reading this annex, it would be useful to consult the following:

1) Clause 1 of Section 1.
2) RFC 1122 Requirements for Internet Hosts – Communication Layers

A.2 ABBREVIATIONS

ADU Application Data Unit
IETF Internet Engineering Task Force
IP Internet Protocol
MAC Medium Access Control
MB MODBUS
MBAP MODBUS Application Protocol
PDU Protocol Data Unit
PLC Programmable Logic Controller
TCP Transport Control Protocol
BSD Berkeley Software Distribution
MSL Maximum Segment Lifetime

A.3 CONTEXT

A.3.1 PROTOCOL DESCRIPTION

A.3.1.1 General communication architecture

A communicating system over MODBUS TCP/IP may include different types of device:

• A MODBUS TCP/IP Client and Server devices connected to a TCP/IP network

• The Interconnection devices like bridge, router or gateway for interconnection
between the TCP/IP network and a serial line sub-network which permit
connections of MODBUS Serial line Client and Server end devices.

Figure A.1 – MODBUS TCP/IP communication architecture

MODBU
S Client
TCP/IP

MODBU
S Server
TCP/IP

MODBU
S Server
TCP/IP

MODBUS
Server

Serial Line

MODBUS
Server

Serial Line

MODBUS
Client

Serial Line

MODBU
S Client
TCP/IP

MODBUS

Client
TCP/IP

Server TCP/IP
gateway

MODBUS Serial

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 56 – PAS 62030 © IEC:2004 (E)

The MODBUS protocol defines a simple Protocol Data Unit (PDU) independent of the
underlying communication layers. The mapping of MODBUS protocol on specific buses
or networks can introduce some additional fields on the Application Data Unit (ADU).

Additional address Function code Data Error check

ADU

PDU

Figure A.2 – General MODBUS frame

The client that initiates a MODBUS transaction builds the MODBUS Application Data
Unit. The function code indicates to the server which kind of action to perform.

A.3.1.2 MODBUS On TCP/IP Application Data Unit
This subclause describes the encapsulation of a MODBUS request or response when it
is carried on a MODBUS TCP/IP network.

Function code DataMBAP Header

PDU

MODBUS TCP/IP ADU

Figure A.3 – MODBUS request/response over TCP/IP

A dedicated header is used on TCP/IP to identify the MODBUS Application Data Unit. It
is called the MBAP header (MODBUS Application Protocol header).
This header provides some differences compared to the MODBUS RTU application data
unit used on serial line:

 The MODBUS ‘slave address’ field usually used on MODBUS Serial Line is
replaced by a single byte ‘Unit Identifier’ within the MBAP Header. The
‘Unit Identifier’ is used to communicate via devices such as bridges,
routers and gateways that use a single IP address to support multiple
independent MODBUS end units.

 All MODBUS requests and responses are designed in such a way that the
recipient can verify that a message is finished. For function codes where
the MODBUS PDU has a fixed length, the function code alone is sufficient.
For function codes carrying a variable amount of data in the request or
response, the data field includes a byte count.

 When MODBUS is carried over TCP, additional length information is
carried in the MBAP header to allow the recipient to recognize message
boundaries even if the message has been split into multiple packets for
transmission. The existence of explicit and implicit length rules, and use of
a CRC-32 error check code (on Ethernet) results in an infinitesimal chance
of undetected corruption to a request or response message.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 57 –

A.3.1.3 MBAP Header description

The MBAP Header contains the following fields:

Fields Length Description - Client Server

Transaction
Identifier

2 Bytes Identification of a
MODBUS Request /
Response transaction.

Initialized by the
client

Recopied by the
server from the
received
request

Protocol Identifier 2 Bytes 0 = MODBUS protocol

Initialized by the
client

Recopied by the
server from the
received
request

Length 2 Bytes Number of following
bytes

Initialized by the
client (request)

Initialized by
the server (
Response)

Unit Identifier 1 Byte Identification of a
remote slave
connected on a serial
line or on other buses.

Initialized by the
client

Recopied by the
server from the
received
request

The header is 7 bytes long:

• Transaction Identifier - It is used for transaction pairing, the MODBUS server copies
in the response the transaction identifier of the request.

• Protocol Identifier – It is used for intra-system multiplexing. The MODBUS protocol
is identified by the value 0.

• Length - The length field is a byte count of the following fields, including the Unit
Identifier and data fields.

• Unit Identifier – This field is used for intra-system routing purpose. It is typically
used to communicate to a MODBUS or a MODBUS+ serial line slave through a
gateway between an Ethernet TCP-IP network and a MODBUS serial line. This field is
set by the MODBUS Client in the request and must be returned with the same value in
the response by the server.

All MODBUS/TCP ADU are sent via TCP on registered port 502.

Remark : the different fields are encoded in Big-endian.

A.3.2 MODBUS FUNCTIONS CODES DESCRIPTION
Standard function codes used on MODBUS application layer protocol are described in
details of Clause 1 of this Specification.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 58 – PAS 62030 © IEC:2004 (E)

A.4 FUNCTIONAL DESCRIPTION

The MODBUS Component Architecture presented here is a general model including
both MODBUS Client and Server Components and usable on any device.

Some devices may only provide the server or the client component.

In the first part of this clause, a brief overview of the MODBUS messaging service
component architecture is given, followed by a description of each component
presented in the architectural model.

A.4.1 MODBUS COMPONENT ARCHITECTURE MODEL

USER
APPLICATION

Communication
Application

Layer

Modbus Client Modbus Server

Modbus Client
Interface

TCP
Management

Connection
 Management Access Ctl

TCP/IP Stack

Stack
parmeterization

Modbus Backend
Interface

R
es

so
ur

ce
 M

an
ag

em
en

t
&

Fl
ow

 C
on

tro
l

Figure A.4 – MODBUS Messaging Service Conceptual Architecture

• Communication Application Layer

A MODBUS device may provide a client and/or a server MODBUS interface.

A MODBUS backend interface can be provided allowing indirectly the access to user
application objects.
Four areas can compose this interface: input discrete, output discrete (coils), input
registers and output registers. A pre-mapping between this interface and the user
application data has to be done (local issue).

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 59 –

Primary tables Object type Type of Comments

 Discretes Input Single bit Read-Only
This type of data can be provided by an I/O system.

Coils Single bit Read-Write
This type of data can be alterable by an application
program.

Input Registers 16-bit word Read-Only
This type of data can be provided by an I/O system

Holding Registers 16-bit word Read-Write
This type of data can be alterable by an application
program.

Input Discrete

MODBUS access

Device application memory

MODBUS SERVER DEVICE

MODBUS RequestCoils

Input Registers

Output Registers

Figure A.5– MODBUS Data Model with

separate blocks

Device application memory

MODBUS SERVER DEVICE

MODBUS Request

Input Discrete

MODBUS access

Coils

Input Registers

Output Registers

R
W

R

W

Figure A.6 –MODBUS Data Model with only

1 block

 MODBUS Client

The MODBUS Client allows the user application to explicitly control information
exchange with a remote device. The MODBUS Client builds a MODBUS request from
parameter contained in a demand sent by the user application to the MODBUS Client
Interface.
The MODBUS Client uses a MODBUS transaction whose management includes waiting
for and processing of a MODBUS confirmation.

 MODBUS Client Interface

The MODBUS Client Interface provides an interface enabling the user application to
build the requests for various MODBUS services including access to MODBUS
application objects. The MODBUS Client interface (API) is not part of this PAS,
although an example is described in the implementation model.

 MODBUS Server

On reception of a MODBUS request this module actives a local action to read, to write
or to achieve some other actions. The processing of these actions is done totally
transparently for the application programmer. The main MODBUS server functions are
to wait for a MODBUS request on 502 TCP port, to treat this request and then to build a
MODBUS response depending on device context.

 MODBUS Backend Interface

The MODBUS Backend Interface is an interface from the MODBUS Server to the user
application in which the application objects are defined.

NOTE The Backend Interface is not defined in this Specification

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 60 – PAS 62030 © IEC:2004 (E)

• TCP Management layer

NOTE The TCP/IP discussion in this Annex A is based in part upon reference RFC
1122 to assist the user in implementing Clause 1 of this section 1 over TCP/IP.

One of the main functions of the messaging service is to manage communication
establishment and ending and to manage the data flow on established TCP
connections.

 Connection Management

A communication between a client and server MODBUS Module requires the use of a
TCP connection management module. It is in charge to manage globally messaging
TCP connections.

Two possibilities are proposed for the connection management. Either the user
application itself manages TCP connections or the connection management is totally
done by this module and therefore it is transparent for the user application. The last
solution implies less flexibility.

The listening TCP port 502 is reserved for MODBUS communications. It is
mandatory to listen by default on that port. However, some markets or applications
might require that another port is dedicated to MODBUS over TCP. For that reason, it
is highly recommended that the clients and the servers give the possibility to the user
to parameterize the MODBUS over TCP port number. It is important to note that
even if another TCP server port is configured for MODBUS service in certain
applications, TCP server port 502 must still be available in addition to any
application specific ports.

 Access Control Module

In certain critical contexts, accessibility to internal data of devices must be forbidden for
undesirable hosts. That is why a security mode is needed and security process may be
implemented if required.

• TCP/IP Stack layer

The TCP/IP stack can be parameterized in order to adapt the data flow control, the
address management and the connection management to different constraints specific
to a product or to a system. Generally the BSD socket interface is used to manage the
TCP connections.

 Resource management and Data flow control

In order to equilibrate inbound and outbound messaging data flow between the
MODBUS client and the server, data flow control mechanism is provided in all layers
of MODBUS messaging stack.
The resource management and flow control module is first based on TCP internal flow
control added with some data flow control in the data link layer and also in the user
application level.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 61 –

A.4.2 TCP CONNECTION MANAGEMENT

A.4.2.1 Connections management Module

A.4.2.1.1 General description

A MODBUS communication requires the establishment of a TCP connection between a
Client and a Server.
The establishment of the connection can be activated either explicitly by the User
Application module or automatically by the TCP connection management module.
In the first case an application-programming interface has to be provided in the user
application module to manage completely the connection. This solution provides
flexibility for the application programmer but it requires a good expertise on TCP/IP
mechanism.
In the second case the TCP connection management is completely hidden to the user
application that only sends and receives MODBUS messages. The TCP connection
management module is in charge to establish a new TCP connection when it is
required.
The definition of the number of TCP client and server connections is not on the scope of
this document (value n in this document). Depending on the device capacities the
number of TCP connections can be different.

Implementation Rules :

1) Without explicit user requirement, it is recommended to implement the automatic TCP

connection management

2) It is recommended to keep the TCP connection opened with a remote device and not

to open and close it for each MODBUS/TCP transaction,
Remark: However the MODBUS client must be capable of accepting a close request
from the server and closing the connection. The connection can be reopened when
required.

3) It is recommended for a MODBUS Client to open a minimum of TCP connections with

a remote MODBUS server (with the same IP address). One connection per application
could be a good choice.

4) Several MODBUS transactions can be activated simultaneously on the same TCP

Connection.
Remark: If this is done then the MODBUS transaction identifier must be used to
uniquely identify the matching requests and responses.

5) In case of a bi-directional communication between two remote MODBUS entities (

each of them is client and server), it is necessary to open separate connections for
the client data flow and for the server data flow.

6) A TCP frame must transport only one MODBUS ADU. It is advised against sending

multiple MODBUS requests or responses on the same TCP PDU

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 62 – PAS 62030 © IEC:2004 (E)

Request_treatment

Connection_established

Wait

Oldest_unused_
connection_closed

Connection_establishment

Idle

Connection_accepted

Oldest_unused_
no_prioritary_
connection_closed

Active_Connection

network_transmission
Request_treatment

Connection_established

Wait

Connection_accepted

Connection_refused

Active_Connection

network_transmission

[connection established]

[Connection OK]

[< n connections]

[access ctl]

[connection request]

[IP forbidden]

[<n connections]

[data]

[no access ctl]

[Connection NOK]

[______Event on a socket[Request to a remote

[IP authorized]

[n connections]

[n connections]

[else]

Figure A.7 – TCP connection management activity diagram

1. Explicit TCP connection management

The user application module is in charge of managing all the TCP connections: active
and passive establishment, connection ending, etc. This management is done for all
MODBUS communication between a client and a server. The BSD Socket interface is
used in the user application module to manage the TCP connection. This solution offers
a total flexibility but it implies that the application programmer has sufficient TCP
knowledge.
A limit of number of client and server connections has to be configured taking into
account the device capabilities and requirement.

2. Automatic TCP connection management

The TCP connection management is totally transparent for the user application module.
The connection management module may accept a sufficient number of client and
server connections.
Nevertheless a mechanism must be implemented in case of exceeding the number of
authorized connection. In such a case we recommend to close the oldest unused
connection.
A connection with a remote partner is established at the first packet received from a
remote client or from the local user application. This connection will be closed if a
termination arrived from the network or decided locally on the device. On reception of a
connection request, the access control option can be used to forbid device accessibility
to unauthorized clients.

Client Server

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 63 –

The TCP connection management module uses the Stack interface (usually BSD Socket
interface) to communicate with the TCP/IP stack.

In order to maintain compatibility between system requirements and server resources,
the TCP management will maintain 2 pools of connection.

 The first pool (priority connection pool) is made of connections that are never
closed on a local initiative. A configuration must be provided to set this pool up. The
principle to be implemented is to associate a specific IP address with each possible
connection of this pool. The devices with such IP addresses are said to be
“marked”. Any new connection that is requested by a marked device must be
accepted, and will be taken from the priority connection pool. It is also necessary to
configure the maximum number of Connections allowed for each remote device to
avoid that the same device uses all the connections of the priority pool.

 The second pool (non-priority connection pool) contains connections for non
marked devices. The rule that takes over here is to close the oldest connection
when a new connection request arrives from a non-marked device and when there
is no more connection available in the pool.

A configuration might be optionally provided to assign the number of connections
available in each pool. However (It is not mandatory) the designers can set the number
of connections at design time if required.

A.4.2.1.2 Connection management description

• Connection establishment :

The MODBUS messaging service must provide a listening socket on Port 502, which
permits to accept new connection and to exchange data with other devices.
When the messaging service needs to exchange data with a remote server, it must
open a new client connection with a remote Port 502 in order to exchange data with this
distant. The local port must be higher than 1024 and different for each client
connection.

Device Device

Client
Ports

Server
Port

502

n
(n>1024)

Server
Port

Client
Ports

502

n
(n>1024)Connection (@ IP1 n,

@IP2 502)

@ IP1 @ IP2

Figure A.8 – MODBUS TCP connection establishment

If the number of client and server connections is greater than the number of authorized
connections the oldest unused connection is closed. The access control mechanism
can be activated to check if the IP address of the remote client is authorized. If not the
new connection is refused.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 64 – PAS 62030 © IEC:2004 (E)

• MODBUS data transfer

A MODBUS request has to be sent on the right TCP connection already opened. The IP
address of the remote is used to find the TCP connection. In case of multiple TCP
connections opened with the same remote, one connection has to be chosen to send
the MODBUS message, different choice criteria can be used like the oldest one, the
first one. The connection has to maintain open during all the MODBUS communications.
As described in the following chapters a client can initiate several MODBUS
transactions with a server without waiting the ending of the previous one.

 Connection closing

When the MODBUS communications are ended between a Client and a Server, the
client has to initiate a connection closing of the connection used for these
communications.

A.4.2.2 Impact of Operating Modes on the TCP Connection

Some Operating Modes (communication break between two operational End Points,
Crash and Reboot on one of the End Point, …) may have impacts on the TCP
Connections. A connection can be seen closed or aborted on one side without the
knowledge of the other side. The connection is said to be "half-open".
This chapter describes the behavior for each main Operating Modes. It is assumed that
the Keep Alive TCP mechanism is used on both end points (See A4.3.2)

A.4.2.2.1 Communication break between two operational end points:

The origin of the communication break can be the disconnection of the Ethernet cable
on the Server side. The expected behavior is:

• If no packet is currently sent on the connection:
The communication break will not be seen if it lasts less than the Keep Alive timer
value. If the communication break lasts more than the Keep Alive timer value, an
error is returned to the TCP Management layer that can reset the connection.

• If Some packets are sent before and after the disconnection:
The TCP retransmission algorithms (Jacobson's, Karn's algorithms and exponential
backoff See 4.3.2) are activated. This may lead to a stack TCP layer Reset of the
Connection before the Keep Alive timer is over.

A.4.2.2.2 Crash and Reboot of the Server end point

After the crash and Reboot of the Server, the connection is "half-open" on Client side.
The expected behavior is:

• If no packet is sent on the half-open connection:
The TCP half-open connection is seen opened from the Client side as long as the
Keep Alive timer is not over. After that an error is returned to the TCP Management
layer that can reset the connection.

• If some packets are sent on the half-open connection:
The Server receives data on a connection that doesn't exist anymore. The stack
TCP layer sends a Reset to close the half-open connection on the Client side

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 65 –

A.4.2.2.3 Crash and Reboot of the Client

After the crash and Reboot of the Client, the connection is "half-open" on Server side.
The expected behavior is:

• No packet is sent on the half-open connection:
The TCP half-open connection is seen opened from the Server side as long as the
Keep Alive timer is not over. After that an error is returned to the TCP Management
layer that can reset the connection.

• If the Client opens a new connection before the Keep Aliver timer is over :
 Two cases has to be studied:

 The connection opening has the same characteristics than the half-open
connection on the server side (same source and destination Ports, same source
and destination IP Addresses), therefore the connection opening will fail at the
TCP stack level after the Time-Out on Connection Establishment (75s on most of
Berkeley implementations). To avoid this long Time-Out during which it is not
possible to communicate, it is advised to ensure that different source port
numbers than the previous one are used for a connection opening after a reboot
on the client side.

 The connection opening has not the same characteristics as the half-open

connection on server side (different source Ports, same destination Port, same
source and destination IP Address), therefore the connection is opened at the
stack TCP level and signaled to the Server TCP Management layer.
If the Server TCP Management layer only supports one connection from a remote
Client IP Address, it can close the old half-opened connection and use the new
one.
If the Server TCP Management layer supports several connections from a remote
Client IP Address, the new connection stays opened and the old one also stays
half-opened until the expiration of the Keep Alive Timer that will return an error to
the TCP Management layer. After that the TCP Management layer will be able to
Reset the old connection.

A.4.2.3 Access Control Module
The goal of this module is to check every new connection and using a list of authorized
remote IP addresses the module can authorize or forbid a remote Client TCP
connection.

In critical context the application programmer needs to choose the Access Control
mode in order to secure its network access. In such a case he needs to Authorize/forbid
access for each remote @IP. The user needs to provide a list of IP addresses and to
specify for each IP address if it’s authorized or not. By default, on security mode, the IP
addresses not configured by the user are forbidden. Therefore with the access control
mode a connection coming from an unknown IP address is closed.

A.4.3 USE of TCP/IP STACK

A TCP/IP stack provides an interface to manage connections, to send and receive data,
and also to do some parameterizations in order to adapt the stack behavior to the
device or system constraints.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 66 – PAS 62030 © IEC:2004 (E)

Network AccessNetwork Access
Ethernet II and 802.3 layerEthernet II and 802.3 layer

 MsgMsg

TCPTCP

ModbusModbus

IPIP
ICMPICMP

ARPARP

The goal of this clause is to give
an overview of the Stack interface
and also some information
concerning the parameterization of
the stack. This overview focuses
on the features used by the
MODBUS Messaging.

For more information, the advice is to read the RFC 1122 that provides guidance for
vendors and designers of Internet communication software. It enumerates standard
protocols that a host connected to the Internet must use as well as an explicit set of
requirements and options.
The stack interface is generally based on the BSD (Berkeley Software Distribution)
Interface that is described in this document.

A.4.3.1 Use of BSD Socket interface
Remark : some TCP/IP stack proposes other types of interface for performance issues.
A MODBUS client or server can use these specific interfaces, but this use will be not
described in Clause 1.

A socket is an endpoint of communication. It is the basic building block for
communication. A MODBUS communication is executed by sending and receiving data
through sockets. The TCPIP library provides only stream sockets using TCP and
providing a connection-based communication service.
The Sockets are created via the socket () function. A socket number is returned, which
is then used by the creator to access the socket. Sockets are created without
addresses (IP address and port number). Until a port is bound to a socket, it cannot be
used to receive data.
The bind () function is used to bind a port number to a socket. The bind () creates an
association between the socket and the port number specified.
In order to initiate a connection, the client must issue the connect () function specifying
the socket number, the remote IP address and the remote listening port number (active
connection establishment).
In order to complete a connection, the server must issue the accept () function
specifying the socket number that was specified in the prior listen () call (passive
connection establishment). A new socket is created with the same properties as the
initial one. This new socket is connected to the client’s socket, and its number is
returned to the server. The initial socket is thereby free for other clients that might want
to connect with the server.

After the establishment of the TCP connection the data can be transferred. The send()
and recv() functions are designed specifically to be used with sockets that are already
connected.

The setsockopt () function allows a socket’s creator to associate options with a socket.
These options modify the behavior of the socket. The description of these options is
given in A.4.3.2.

The select () function allows the programmer to test events on all sockets.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 67 –

The shutdown () function allows a socket user to disable send () and/or receive () on
the socket.

Once a socket is no longer needed, its socket descriptor can be discarded by using the
close () function.

Figure A.9: MODBUS Exchanges describes a full MODBUS communication between a
client and a s server. The Client establishes the connection and sends 3 MODBUS
requests to the server without waiting the response of the first one. After receiving all
the responses the Client closes the connection properly.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 68 – PAS 62030 © IEC:2004 (E)

CLIENT
(IP1)

fd=socket()

bind(fd,n)

connect(fd,IP2,502)

send(fd)

SERVER
(IP2)

fd'=socket()

bind(fd',502)

listen(fd')

fd''=accept(fd')

recv(fd'')

MODBUS Request PDU 1MODBUS Request PDU i

send(fd)

recv(fd'')

send(fd")

MODBUS Response PDU 1

recv(fd)

MODBUS Request PDU N

send(fd)

MODBUS Response PDU i

recv(fd) recv(fd'')

MODBUS Response PDU N

recv(fd) send(fd")

send(fd")

close(fd)

close(fd")

SYN J

SYN K, ACK J+1

ACK K+1

FIN

ACK of FIN

FIN

ACK of FIN

Figure A.9 – MODBUS Exchanges

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 69 –

A.4.3.2 TCP layer parameterization
Some parameters of the TCP/IP stack can be adjusted to adapt its behavior to the
product or system constraints. The following parameters can be adjusted in the TCP
layer:

• Parameters for each connection:

SO-RCVBUF, SO-SNDBUF:

These parameters allow setting the high water mark for the Send and the Receive
Socket. They can be adjusted for flow control management. The size of the received
buffer is the maximum size advertised window for that connection. Socket buffer sizes
must be increased in order to increase performances. Nevertheless these values must
be smaller than internal driver resources in order to close the TCP window before
exhausting internal driver resources.

The received buffer size depends on the TCP Windows size, the TCP Maximum
segment size and the time needed to absorb the incoming frames. With a Maximum
Segment Size of 300 bytes (a MODBUS request needs a maximum of 256 bytes + the
MBAP header size), if we need 3 frames buffering, the socket buffer size value can be
adjusted to 900 bytes. For biggest needs and best-scheduled time, the size of the TCP
window may be increased.

TCP-NODELAY:

Small packets (called tinygrams) are normally not a problem on LANs, since most LANs
are not congested, but these tinygrams can lead to congestion on wide area networks.
A simple solution, called the "NAGLE algorithm", is to collect small amounts of data and
sends them in a single segment when TCP acknowledgments of previous packets
arrive.
In order to have better real-time behavior it is recommended to send small amounts of
data directly without trying to gather them in a single segment. That is why it is
recommended to force the TCP-NODELAY option that disables the "NAGLE algorithm"
on client and server connections.

SO-REUSEADDR:

When a MODBUS server closes a TCP connection initialized by a remote client, the
local port number used for this connection cannot be reused for a new opening while
that connection stay in the "Time-wait" state (during two MSL : Maximum Segment
Lifetime).
It is recommended specifying the SO-REUSEADDR option for each client and server
connection to bypass this restriction. This option allows the process to assign itself a
port number that is part of a connection that is in the 2MSL wait for client and listening
socket.

SO-KEEPALIVE:

By default on TCP/IP protocol no data are sent across an idle TCP connection.
Therefore if no process at the ends of a TCP connection is sending data to the other,
nothing is exchanged between the two TCP modules. This assumes that either the
client application or the server application uses timers to detect inactivity in order to
close a connection.
It is recommended to enable the KEEPALIVE option on both client and server
connection in order to poll the other end to know if the distant has either crashed and is
down or crashed and rebooted.
Nevertheless we must keep on mind that enabling KEEPALIVE can cause perfectly
good connections to be dropped during transient failures, that it consumes unnecessary
bandwidth on the network if the keep alive timer is too short.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 70 – PAS 62030 © IEC:2004 (E)

• Parameters for the whole TCP layer:

Time Out on establishing a TCP Connection:

Most Berkeley-derived systems set a time limit of 75 seconds on the establishment of a
new connection, this default value should be adapted to the real time constraint of the
application.

Keep Alive parameters:

The default idle time for a connection is 2 hours. Idles times in excess of this value
trigger a keep alive probe. After the first keep alive probe, a probe is sent every 75
seconds for a maximum number of times unless a probe response is received.
The maximum number of keep Alive probes sent out on an idle connection is 8. If no
probe response is received after sending out the maximum number of keep Alive
probes,TCP signal an error to the application that can decide to close the connection

Time-out and retransmission parameters:

A TCP packet is retransmitted if its lost has been detecting. One way to detect the lost
is to manage a Retransmission Time-Out (RTO) that expires if no acknowledgement
have been received from the remote side.
TCP manages a dynamic estimation of the RTO. For that purpose a Round-Trip Time
(RTT) is measured after the send of every packet that is not a retransmission. The
Round-Trip Time (RTT) is the time taken for a packet to reach the remote device and to
get back an acknowledgement to the sending device. The RTT of a connection is
calculated dynamically, nevertheless if TCP cannot get an estimate within 3 seconds,
the default value of the RTT is set to 3 seconds.
If the RTO has been estimated, it applies to the next packet sending. If the
acknowledgement of the next packet is not received before the estimated RTO
expiration, the Exponential BackOff is activated. A maximum number of
retransmissions of the same packet is allowed during a certain amount of time. After
that if no acknowledgement has been received, the connection is aborted.
The maximum number of retransmissions and the maximum amount of time before the
abort of the connection (tcp_ip_abort_interval) can be set up on some stacks.

Some retransmission algorithms are defined in TCP standards :

 The Jacobson's RTO estimation algorithm is used to estimate the
Retransmission Time-Out (RTO),

 The Karn's algorithm says that the RTO estimation should not be done on a
retransmitted segment,

 The Exponential BackOff defines that the retransmission time-out is doubled for
each retransmission with an upper limit of 64 seconds.

 The fast retransmission algorithm allows retransmitting after the reception of
three duplicate acknowledgments. This algorithm is advised because on a LAN it
may lead to a quicker detection of the lost of a packet than waiting for the RTO
expiration.

The use of these algorithms is recommended for a MODBUS implementation.

A.4.3.3 IP layer parameterization

A.4.3.3.1 IP Parameters
The following parameters must be configured in the IP layer of a MODBUS
implementation :

• Local IP Address : the IP address can be part of a Class A, B or C.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 71 –

• Subnet Mask, : Subnetting an IP Network can be done for a variety of reasons : use of
different physical media (such as Ethernet, WAN, etc.), more efficient use of
network addresses, and the capability to control network traffic. The Subnet Mask
has to be consistent with the IP address class of the local IP address.

• Default Gateway: The IP address of the default gateway has to be on the same

subnet as the local IP address. The value 0.0.0.0 is forbidden. If no gateway is to be
defined then this value is to be set to either 127.0.0.1 or the Local IP address.

Remark : The MODBUS messaging service does not require the fragmentation function
in the IP layer.

The local IP End Point shall be configured with a local IP Address and with a Subnet
Mask and a Default Gateway (different from 0.0.0.0) .

A.4.4 COMMUNICATION APPLICATION LAYER

A.4.4.1 MODBUS Client

Modbus
Client

TCP/IP

Modbus
Server
TCP/IP

Modbus
Server
TCP/IP

Modbus
Server

Serial Line

Modbus
Server

Serial Line

Modbus
Client

Serial Line

Modbus
Client

TCP/IP

Modbus TCP / IP

Client TCP/IP
gateway

Server TCP/IP
gateway

Modbus Serial line

Figure A.10 – MODBUS Client unit

A.4.4.1.1 MODBUS client design

The definition of MODBUS/TCP protocol allows a simple design of a client. The
following activity diagram describes the main treatments that are processed by a client
to send a MODBUS request and to treat a MODBUS response.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 72 – PAS 62030 © IEC:2004 (E)

Send negative
confirmation to user
Application

Process
MODBUS
Confirmation

Set Waiting
response timer

Send MODBUS request
To TCP management

Wait

Find out pending
transaction

Idle

Send positive
confirmation to
User Application

Build MODBUS
request

Wait

Idle

[Retries number reached]

[Request_from_the_user application]

[Confirmation error]

Waiting_response_timer_expires

[Reveive_Response_from_TCP_Mgt]

[Retries number not reached]

[Confirmation OK]

[Send Not OK] [Send OK]

Figure A.11 – MODBUS Client Activity Diagram

A MODBUS client can receive three events:
 A new demand from the user application to send a request, in this case a MODBUS

request has to be encoded and be sent on the network using the TCP management
component service. The lower layer (TCP management module) can give back an
error due to a TCP connection error, or some other errors.

 A response from the TCP management, in this case the client has to analyze the
content of the response and send a confirmation to the user application

 The expiration of a Time out due to a non-response. A new retry can be sent on the
network or a negative confirmation can be sent to the User Application.
Remark : These retries are initiated by the MODBUS client, some other retries can
also be done by the TCP layer in case of TCP acknowledge lack.

A.4.4.1.2 Build a MODBUS Request
Following the reception of a demand from the user application, the client has to build a
MODBUS request and to send it to the TCP management.
Building the MODBUS request can be split in several sub-tasks:

 The instantiation of a MODBUS transaction that enables the Client to memorize all

required information in order to bind later the response to the request and to send
the confirmation to the user application.

 The encoding of the MODBUS request (PDU + MPAB header). The user application
that initiates the demand has to provide all required information which enables the
Client to encode the request. The MODBUS PDU is encoded according to part 1 of
this Specification. (MB function code, associated parameters and application data).
All fields of the MBAP header are filled. Then, the MODBUS request ADU is built
prefixing the PDU with the MBAP header

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 73 –

 The sending of the MODBUS request ADU to the TCP management module which is
in charge of finding the right TCP socket towards the remote Server. In addition to
the MODBUS ADU the Destination IP address must also be passed.

The following activity diagram describes, more deeply than in Figure A.11 MODBUS
Client Activity Diagram, the request building phase.

Instantiate a MB
transaction

Initialize the
transaction

Send MB
request to TCP
Mgt

Send a
negative
confirmation to
the user
application

Encode the MB
request PDU

Encode the
MBAP header

[No Transaction available]

[Transaction available]

Figure A.12 – Request building activity diagram

The following example describes the MODBUS request ADU encoding for reading the
register # 5 in a remote server :

The following example describes the MODBUS request ADU encoding for reading 1
word at the address 05 in a remote server :

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 74 – PAS 62030 © IEC:2004 (E)

♦ MODBUS Request ADU encoding :

 Description Size Example
Transaction Identifier Hi 1 0x15
Transaction Identifier Lo 1 0x01
Protocol Identifier 2 0x0000
Length 2 0x0006

MBAP Header

Unit Identifier 1 0xFF
Function Code (*) 1 0x03
Starting Address 2 0x0004

MODBUS
request

Quantity of Registers 2 0x0001

(*) See Clause 1 of this PAS.

• Transaction Identifier

The transaction identifier is used to associate the future response with the request.
So, at a time, on a TCP connection, this identifier must be unique. There are
several manners to use the transaction identifier:

- For example, it can be used as a simple "TCP sequence number" with a
counter which is incremented at each request.

- It can also be judiciously used as a smart index or pointer to identify a
transaction context in order to memorize the current remote server and the
pending MODBUS request.

Normally, on MODBUS serial line a client must send one request at a time. This means
that the client must wait for the answer to the first request before sending a second
request. On TCP/MODBUS, several requests can be sent without waiting for a
confirmation to the same server. The MODBUS/TCP to MODBUS serial line gateway is
in charge of ensuring compatibility between these two behaviors.
The number of requests accepted by a server depends on its capacity in term of
number of resources and size of the TCP windows. In the same way the number of
transactions initialized simultaneously by a client depends also on its resource capacity.
This implementation parameter is called "NumberMaxOfClientTransaction" and must
be described as one of the MODBUS client features. Depending of the device type this
parameter can take a value from 1 to 16.

• Unit Identifier

This field is used for routing purpose when addressing a device on a MODBUS or
MODBUS+ serial line sub-network. In that case, the “Unit Identifier” carries the
MODBUS slave address of the remote device:

If the MODBUS server is connected to a MODBUS+ or MODBUS Serial Line
sub-network and addressed through a bridge or a gateway, the MODBUS Unit
identifier is necessary to identify the slave device connected on the sub-
network behind the bridge or the gateway. The destination IP address
identifies the bridge itself and the bridge uses the MODBUS Unit identifier to
forward the request to the right slave device.
The MODBUS slave device addresses on serial line are assigned from 1 to
247 (decimal). Address 0 is used as broadcast address.

On TCP/IP, the MODBUS server is addressed using its IP address; therefore, the
MODBUS Unit Identifier is useless. The value 0xFF has to be used.

When addressing a MODBUS server connected directly to a TCP/IP network,
it’s recommended not using a significant MODBUS slave address in the “Unit
Identifier” field. In the event of a re-allocation of the IP addresses within an
automated system and if a IP address previously assigned to a MODBUS
server is then assigned to a gateway, using a significant slave address may
cause trouble because of a bad routing by the gateway. Using a non-

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 75 –

significant slave address, the gateway will simply discard the MODBUS PDU
with no trouble. 0xFF is recommended for the “Unit Identifier" as non-
significant value.
Remark : The value 0 is also accepted to communicate directly to a
MODBUS/TCP device.

A.4.4.1.3 Process MODBUS Confirmation
When a response frame is received on a TCP connection, the Transaction Identifier
carried in the MBAP header is used to associate the response with the original request
previously sent on that TCP connection:

 If the Transaction Identifier does not refer to any MODBUS pending transaction, the
response must be discarded.

 If the Transaction Identifier refers to a MODBUS pending transaction, the response
must be parsed in order to send a MODBUS Confirmation to the User Application
(positive or negative confirmation)

Parsing the response consists in verifying the MBAP Header and the MODBUS PDU
response:

 MBAP Header
After the verification of the Protocol Identifier that must be 0x0000, the length gives
the size of the MODBUS response.
If the response comes from a MODBUS server device directly connected to the
TCP/IP network, the TCP connection identification is sufficient to unambiguously
identify the remote server. Therefore, the Unit Identifier carried in the MBAP
header is not significant (value 0xFF) and must be discarded.
If the remote server is connected on a Serial Line sub-network and the response
comes from a bridge, a router or a gateway, then the Unit Identifier (value != 0xFF)
identifies the remote MODBUS server which has originally sent the response.

 MODBUS Response PDU

The function code must be verified and the MODBUS response format analyzed
according to the MODBUS Application Protocol:
• if the function code is the same as the one used in the request, and if the

response format is correct, then the MODBUS response is given to the user
application as a Positive Confirmation.

• If the function code is a MODBUS exception code (Function code + 80H), the
MODBUS exception response is given to the user application as a Positive
Confirmation.

• If the function code is different from the one used in the request (=non
expected function code), or if the format of the response is incorrect, then an
error is signaled to the user application using a Negative Confirmation.

Remark: A positive confirmation is a confirmation that the command was received and
responded to by the server. It does not imply that the server was able to successfully
act on the command (failure to successfully act on the command is indicated by the
MODBUS Exception response).

The following activity diagram describes, more deeply than in Figure A.11: MODBUS
Client Activity Diagram, the confirmation processing phase.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 76 – PAS 62030 © IEC:2004 (E)

Use MB transaction to
bind with the request

Process_MB_
exception

Find Out pending
MB transaction

Extract MB
Response

Discard
Response

Analyse MBAP header

Analyse Response
PDU

Wait

Send positive
confirmation to user
application

Send negative
Confirmation to
user Application

Wait

[Modbus_protocol]

[No Pending Transaction]

[Incorrect Response]

[Other_protocol]

[MB Exception response]

[MB response OK]

[PendingTransaction]

Figure A.13 – Process MODBUS Confirmation activity diagram

A.4.4.1.4 Time-out managing

There is deliberately NO specification of required response time for a transaction over
MODBUS/TCP.
This is because MODBUS/TCP is expected to be used in the widest possible variety of
communication situations, from I/O scanners expecting sub-millisecond timing to long
distance radio links with delays of several seconds.
From a client perspective, the timeout must take into account the expected transport
delays across the network, to determine a ‘reasonable’ response time. Such transport
delays might be milliseconds for a switched Ethernet, or hundreds of milliseconds for a
wide area network connection.
In turn, any ‘timeout’ time used at a client to initiate an application retry should be
larger than the expected maximum ‘reasonable’ response time. If this is not followed,
there is a potential for excessive congestion at the target device or on the network,
which may in turn cause further errors. This is a characteristic, which should always be
avoided.
So in practice, the client timeouts used in high performance applications are always
likely to be somewhat dependent on network topology and expected client performance.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 77 –

Applications which are not time critical can often leave timeout values to the normal
TCP defaults, which will report communication failure after several seconds on most
platforms.

A.4.4.2 MODBUS Server

Modbus
Client

TCP/IP

Modbus
Server
TCP/IP

Modbus
Server
TCP/IP

Modbus
Server

Serial Line

Modbus
Server

Serial Line

Modbus
Client

Serial Line

Modbus
Client

TCP/IP

Modbus TCP / IP

Client TCP/IP
gateway

Server TCP/IP
gateway

Modbus Serial line

Figure A.14 – MODBUS Server unit

The role of a MODBUS server is to provide access to application objects and services
to remote MODBUS clients.

Different kind of access may be provided depending on the user application :
 simple access like get and set application objects attributes
 advanced access in order to trigger specific application services

The MODBUS server has:

 To map application objects onto readable and writable MODBUS objects, in order
to get or set application objects attributes.

 To provide a way to trigger services onto application objects.

In run time the MODBUS server has to analyze a received MODBUS request, to
process the required action, and to send back a MODBUS response.

NOTE The application objects and services of the Backend Interface are to obtain the requested data
based upon the function code, and the User is responsible.

A.4.4.2.1 MODBUS Server Design

The MODBUS Server design depends on both :

 the kind of access to the application objects (simple access to attributes or
advanced access to services)

 the kind of interaction between the MODBUS server and the user application
(synchronous or asynchronous).

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 78 – PAS 62030 © IEC:2004 (E)

The following activity diagram describes the main treatments that are processed by the
Server to obtain a MODBUS request from TCP Management, then to analyze the
request, to process the required action, and to send back a MODBUS response.

Build a MODBUS
response

Wait

MODBUS_PDU_Checking...

Idle

Build a MODBUS
Exception

Send response
to TCP_Mgt

MODBUS_Service_Processing

Invoke back
end interface

Response
processing

Release the
MODBUS server
transaction

Wait

MODBUS_PDU_Checking...

[Processing OK] [Processing OK]

[Need user application processing]

[Server init]

[Reception of a MODBUS indication
from TCP Mgt]

[Response from user application]

[MODBUS transaction accepted]

[MB transaction refused]

[MB Indication discarded]

[Invocation user application done]

[Processing not OK]

[Processing not complete]

[MB Exception OK]

[processing ends]

[Processing not OK]

[MB Response OK]

Figure A.15 – Process MODBUS Indication activity diagram

As shown in the previous activity diagram:

 Some services can be immediately processed by the MODBUS Server itself, with
no direct interaction with the User Application ;

 Some services may require also interacting explicitly with the User Application to
be processed ;

 Some other advanced services require invoking a specific interface called
MODBUS Back End service. For example, a User Application service may be
triggered using a sequence of several MODBUS request/response transactions
according to a User Application level protocol. The Back End service is
responsible for the correct processing of all individual MODBUS transactions in
order to execute the global User Application service.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 79 –

A more complete description is given in the following chapters.

The MODBUS server can accept to serve simultaneously several MODBUS requests.
The maximum number of simultaneous MODBUS requests the server can accept is one
of the main characteristics of a MODBUS server. This number depends on the server
design and its processing and memory capabilities. This implementation parameter is
called "NumberMaxOfSeverTransaction" and must be described as one of the
MODBUS server features. It may have a value from 1 to 16 depending on the device
capabilities.

The behavior and the performance of the MODBUS server are significantly affected by
the "NumberMaxOfTransaction" parameter. Particularly, it's important to note that the
number of concurrent MODBUS transactions managed may affect the response time of
a MODBUS request by the server.

A.4.4.2.2 MODBUS PDU Checking

The following diagram describes the MODBUS PDU Checking activity.

Parse the
MBAP header

Instantiate a
MB Transaction

MB Indication
discarded

MB Transaction
refused

MB Transaction
accepted

Parse The MB
PDU

[MBAP OK]

[Transaction available]

[OK]

[No Transaction available]

[Error on MB PDU]

[Error on MBAP]

Figure A.16 – MODBUS PDU Checking activity diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 80 – PAS 62030 © IEC:2004 (E)

The MODBUS PDU Checking function consists of first parsing the MBAP Header. The
Protocol Identifier field has to be checked :

 If it is different from MODBUS protocol type, the indication is simply discarded.
 If it is correct (= MODBUS protocol type; value 0x00), a MODBUS transaction is

instantiated.

The maximum number of MODBUS transactions the server can instantiated is defined
by the "NumberMaxOfTransaction" parameter (A system or a configuration parameter).

In the case of no more transaction is available, the server builds a MODBUS exception
response (Exception code 6 : Server Busy).

If a MODBUS transaction is available, it's initialized in order to memorize the following
information:

• The TCP connection identifier used to send the indication (given by the TCP
Management)

• The MODBUS Transaction ID (given in MBAP Header)
• The Unit Identifier (given in MBAP Header)

Then the MODBUS PDU is parsed. The function code is first controlled :
 in case of invalidity a MODBUS exception response is built (Exception code 1 : Invalid

function).
 If the function code is accepted, the server initiates the "MODBUS Service

processing" activity.

A.4.4.2.3 MODBUS service processing

Analyse
requested service

Local Service
processing

Build Modbus
ResponseBuild Modbus

Exception Response

Send an invocation to
User Application
through MB Backend
interface

Response
processing

[Need User App processing]

[Completed]

[Local processing]

Transaction_accepted

[Processing OK]

[Processing not completed]

[Processing not OK]

Response_from_user_App

[Processing OK]

[Processing Not OK]

Figure A.17 – MODBUS service processing activity diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 81 –

The processing of the required MODBUS service can be done in different ways
depending on the device software and hardware architecture as described in the
hereafter examples :

• Within a compact device or a mono-thread architecture where the MODBUS
server can access directly to the user application data, the required service can
be processed "locally" by the server itself without invoking the Back End service.
The processing is done according to Clause 1 of this PAS. In case of an error, a
MODBUS exception response is built.

• Within a modular multi-processor device or a multi-thread architecture where the
"communication layers" and the "user application layer" are 2 separate entities,
some trivial services can be processed completely by the Communication entity
while some others can require a cooperation with the User Application entity
using the Back End service.

To interact with the User Application, the MODBUS Backend service must implement all
appropriate mechanisms in order to handle User Application transactions and to
manage correctly the User Application invocations and associated responses.

A.4.4.2.4 User Application Interface (Backend Interface)
Several strategies can be implemented in the MODBUS Backend service to achieve its
job although they are not equivalent in terms of user network throughput, interface
bandwidth usage, response time, or even design workload.

The MODBUS Backend service will use the appropriate interface to the user
application :

 Either a physical interface based on a serial link, or a dual-port RAM scheme, or
a simple I/O line, or a logical interface based on messaging services provided by
an operating system.

 The interface to the User Application may be synchronous or asynchronous.

The MODBUS Backend service will also use the appropriate design pattern to get/set
objects attributes or to trigger services. In some cases, a simple "gateway pattern" will
be adequate. In some other cases, the designer will have to implement a "proxy
pattern" with a corresponding caching strategy, from a simple exchange table history to
more sophisticated replication mechanisms.

The MODBUS Backend service has the responsibility to implement the protocol
transcription in order to interact with the User Application. Therefore, it can have to
implement mechanisms for packet fragmentation/reconstruction, data consistency
guarantee, and synchronization whatever is required.

A.4.4.2.5 MODBUS Response building
Once the request has been processed, the MODBUS server has to build the response
using the adequate MODBUS server transaction and has to send it to TCP management
component.
Depending on the result of the processing two types of response can be built :

 A positive MODBUS response :
 The response function code = The request function code

 A MODBUS Exception response :

 The objective is to provide to the client relevant information concerning the
error detected during the processing ;

 The response function code = the request function code + 0x80 ;
 The exception code is provided to indicate the reason of the error.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 82 – PAS 62030 © IEC:2004 (E)

Exception
Code

MODBUS name Comments

01 Illegal Function
Code

The function code is unknown by the server

02 Illegal Data
Address

Dependant on the request

03 Illegal Data Value Dependant on the request
04 Server Failure The server failed during the execution
05 Acknowledge The server accepted the service invocation but the

service requires a relatively long time to execute. The
server therefore returns only an acknowledgement of the
service invocation receipt.

06 Server Busy The server was unable to accept the MB Request PDU.
The client application has the responsibility of deciding if
and when to re-send the request.

0A Gateway problem Gateway paths not available.
0B Gateway problem The targeted device failed to respond. The gateway

generates this exception

The MODBUS response PDU must be prefixed with the MBAP header which is built
using data memorized in the transaction context.

• Unit Identifier
The Unit Identifier is copied as it was given within the received MODBUS request
and memorized in the transaction context.

• Length
The server calculates the size of the MODBUS PDU plus the Unit Identifier byte.
This value is set in the "Length" field.

• Protocol Identifier
The Protocol Identifier field is set to 0x0000 (MODBUS protocol), as it was given
within the received MODBUS request.

• Transaction Identifier
This field is set to the "Transaction Identifier" value that was associated with the
original request and memorized in the transaction context.

Then the MODBUS response must be returned to the right MODBUS Client using the
TCP connection memorized in the transaction context. When the response is sent, the
transaction context must be free.

A.5 IMPLEMENTATION GUIDELINE

The objective of this clause is to propose an example of a messaging service
implementation.
The model describes below can be used as a guideline during a client or a server
implementation of a MODBUS messaging service.

NOTE The messaging service implementation is the responsibility of the User.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 83 –

A.5.1 OBJECT MODEL DIAGRAM

Communication application layer

TCP management

Configuration layer

InterfaceUserApplication

InterfaceIndicationMsg InterfaceResponseMsg

User Application

Figure A.18 – MODBUS Messaging Service Object Model Diagram

Four main packages composes the Object Model Diagram:
• The Configuration layer which configures and manages operating modes of

components of other packages
• The TCP Management which interfaces the TCP/IP stack and the communication

application layer managing TCP connection. It implies the management of socket
interface.

• The Communication application layer which is composed by the MODBUS client
on one side and the MODBUS server on the other side. This package is linked
with the user application.

The User application which corresponds to the device application, it is completely
dependent on the device and therefore it will be not part of this Specification.

This model is independent of implementation choices like the type of OS, the memory
management, etc. In order to guarantee this independence generic Interface layers are
used between the TCP management layer and the communication layer and between
the communication layer and the user application layer.
Different implementations of this interface can be realized by the User: Pipe between
two tasks, shared memory, serial link interface, procedural call, etc.
Some assumptions have to be taken to defined the hereafter implementation model :
• Static memory management
• Synchronous treatment of the server
• One task to process the receptions on all sockets.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 84 – PAS 62030 © IEC:2004 (E)

A.5.1.1 TCP management package

TCP management
package

InterfaceIndicationMsg
(from Logical View) InterfaceResponseMsg

(from Logical View)

ItemConnexion
SocketDescript : Int
IPSource : Long
PortSource : Long
PortDest : Long
IPdestination : long
BufferIn : Char*
BufferOut : Char*

ConnexionMgt
NbConnectionSupported : Int
NbLocalConnection : Int
NbRemoteConnection : int

m_sendData()
m_Receivedata()
m_isConnectionAuthorized()

InterfaceConnex ion

GetObjectConnexion()
FreeObjectConnexion()
RetreivingObjectConnexion()

MBAP

IsMdbHeader()
GetMessagelength()
WriteTransactionId()
ReadTransactionId()

TCPConnexion

IsConnexionRequest()
OpenConnexion()
AcceptConnexion()
CloseConnexion()
IsEtablishedConnexion()

StackTCP IP

Socket interface()

Figure A.19 – MODBUS TCP management package

The TCP management package comprises the following classes :

CInterfaceConnexion: The role of this class consists in managing memory pool for
connections.

CItemConnexion: This class contains all information needed to describe a connection.

CTCPConnexion:, This class provides methods for managing automatically a TCP
connection (Interface socket is provided by CStackTCP_IP).

CConnexionMngt: This class manages all connections and send query/response to
MODBUS Server/MODBUS Client through CinterfaceIndicationMsg and
CInterfaceResponseMsg. This class also treats the Access control for the connection
opening.

CMBAP: This class provides methods for reading/writing/analyzing the MODBUS
MBAP.

CStackTCP_IP: This class Implements socket services and provides parameterization
of the stack.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 85 –

A.5.1.2 Configuration layer package

Operating Mode

m_Configure()
m_Start()
m_Stop()
m_Reset()

ConfigurationObject
GlobalState : char
MyModbusAddress : Int
MyIPAddress : long
MyPortNumber : Long
NumberAuthorized_IP : int
ListAuthorized_IP : int
NumberForbidden_IP : Int
ListForbidden_IP : long()
NumberConnect ionSupported : int

TCP management
(from Logical View)

Communication applicat ion layer
(from Logical View)

--

Configuartion layer
package

Figure A.20 – MODBUS Configuration layer package

The Configuration layer package comprises the following classes :

TConfigureObject: This class groups all data needed for configuring each other
component. This structure is filled by the method m_Configure from the class
CoperatingMode. Each class needing to be configured gets its own configuration data
from this object. The configuration data is implementation dependent therefore the list
of attributes of this class is provided as an example.

COperatingMode: The role of this class is to fill the TConfigureObject (according to
the user configuration) and to manage the operating modes of the classes described
below:

 CMODBUSServer
 CMODBUSClient
 CconnexionMngt

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 86 – PAS 62030 © IEC:2004 (E)

A.5.1.3 Communication layer package

InterfaceUserApplication
(from Logical View)

ModbusServer

m_ServerReceivingMessage()
m_ServerModbus()
m_BuildResponse()
m_InitServerfunction()

ModbusPDU

IsMdbAnalysisOfDataCorrect()
m_BuildModbusException()
m_WritePDU()

Transaction
TransactionId : int
TimeSnapShot : int

IsTransactionTimeOut()
m_WriteTransactionID()
m_StartTimesnapShoot()

InterfaceResponseMsg
(from Logical View)

InterfaceIndicationMsg
(from Logical View)

ModbusClient

m_ClientReceivingResponse()
m_ClientReceivingMessage()
m_ClientModbus()

--

--

Communication
Application layer
package

Figure A.21 –MODBUS Communication Application layer package

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 87 –

The Communication Application layer package comprises the following classes :

CMODBUSServer: MODBUS query is received from class CInterfaceIndicationMsg
(by the method m_ServerReceivingMessage). The role of this class is to build the
MODBUS response or the MODBUS Exception according the query (incoming from
network). This class implements the Graph State of MODBUS server. Response can be
built only if class COperatingMode has sent both user configuration and right operating
modes.

CMODBUSClient: MODBUS query is read from class CInterfaceUserApplication, The
client task receives query by the method m_ClientReceivingMessage. This class
implements the State Graph of MODBUS client and manages transaction for linking
query with response (from network). Query can be sent over network only if class
CoperatingMode has sent both user configuration and right operating modes.

CTransaction: This class implements methods and structures for managing
transactions.

A.5.1.4 Interface classes

CInterfaceUserApplication: This class represents the interface with the user
application, it provides two methods to access to the user data. In a real
implementation this method can be implemented in different way depending of the
hardware and software device capabilities (equivalent to an end-driver, example access
to PCMCIA, shared memory, etc).

CInterfaceIndicationMsg: This Interface class is proposed for sending query from
Network to the MODBUS Server, and for sending response from Network for the Client.
This class interfaces TCPManagement and ‘Communication Application Layer’
packages (From Network). The implementation of this class is device dependent.

 CInterfaceResponseMsg: This Interface class is used for receiving response from the
Server and for sending query from the client to the Network. This class interfaces
packages ‘Communication Application Layer’ and package ‘TCPManagement’ (To
Network). The implementation of this class is device dependent.

A.5.2 IMPLEMENTATION CLASS DIAGRAM

The following Class Diagram describes the complete diagram of a proposal
implementation.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 88 – PAS 62030 © IEC:2004 (E)

Figure A.22 – Class Diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 89 –

A.5.3 SEQUENCE DIAGRAMS
Two Sequence diagrams are described hereafter are an example in order to illustrate a
Client MODBUS transaction and a Server MODBUS transaction.

Figure A.23 – MODBUS client sequence diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 90 – PAS 62030 © IEC:2004 (E)

General comments for a better understanding of the Client sequence diagram:

First step: A Reading query comes from User Application (method m_Read).

Second Step: The ‘Client’ task receives the MODBUS query (method
m_ClientReceivingMessage). This is the entry point of the Client. To associate the
query with the corresponding response when it will arrive, the Client uses a
Transaction resource (Class CTransaction). The MODBUS query is sent to the
TCP_Management by calling the class interface CInterfaceResponseMsg (method
m_MODBUSRequest)

Third Step: If the connection is already established there is nothing to do on
connection, the message can be send over the network. Otherwise, a connection must
be opened before the message can be sent over the network.
At this time the client is waiting for a response (from a remote server)

Fourth step: Once a response has been received from the network, the TCP/IP stack
receives data (method m_EventOnSocket is implicitly called).
 If the connection is already established, then the MBAP is read for retrieving the
connection object (connection object gives memory resource and other information).
Data coming from network is read and confirmation is sent to the client task via the
class Interface CInterfaceIndicationMsg (method m_MODBUSConfirmation). Client
task receives the MODBUS Confirmation (method m_ClientReceivingResponse).
Finally the response is written to the user application (method m_WriteData), and
transaction resource is freed.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 91 –

Hereafter is an example of a MODBUS Server exchange.

Figure A.24 – MODBUS server Diagram

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 92 – PAS 62030 © IEC:2004 (E)

General comments for a better understanding of the Server sequence diagram:

First step: a client has sent a query (MODBUS query) over the network.
The TCP/IP stack receives data (method m_EventOnSocket is implicitly called).

Second step: The query may be a connection request or not (method
m_IsConnexionRequest).
If the query is a connection request, the connection object and buffers for receiving
and sending the MODBUS frame are allocated (method m_GetObjectConnexion).
Just after, the connection access control must be checked and accepted (method
m_AcceptConnexion)

Third step: If the query is a MODBUS request, the complete MODBUS Query can be
read (method m_ReceiveData). At this time the MBAP must be analyzed (method
m_IsMdbHeaderCorrect). The complete frame is sent to the Server task via the
CinterfaceIndicationMessaging Class (method m_MODBUSIndication). Server task
receives the MODBUS Query (method m_ServerReceivingMessage) and analyses it.
If an error occurs (function code not supported, etc), a MODBUSException frame is
built (m_BuildMODBUSException), otherwise the response is built.

Fourth Step: The response is sent over the network via the
CinterfaceResponseMessaging (method m_MODBUSResponse). Treatment on the
connection object is done by the method m_SendData (retrieve the connection
descriptor, etc) and data is sent over the network.

A.5.4 CLASSES AND METHODS DESCRIPTION

A.5.4.1 MODBUS server class

Class CMODBUSServer

class CMODBUSServer

Stereotype implementationClass
Provides methods for managing MODBUS Messaging in Server Mode

Field Summary
protected char GlobalState

state of the MODBUS Server

Constructor Summary
CMODBUSServer(TConfigureObject * lnkConfigureObject)
Constructor : Create internal object

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 93 –

Method Summary
protected void m_InitServerFunctions(void)

Function called by the constructor for filling array of functions
'm_ServerFunction'

bool m_Reset(void)
Method for Reseting Server, return true if reseted

int m_ServerReceivingMessage(TItemConnexion * lnkMODBUS)
Interface with CindicationMsg::m_MODBUSIndication for receiving Query
from NetWork return negative value if problem

bool m_Start(void)
Method for Starting Server, return true if Started

bool m_Stop(void)
Method for Stopping Server, return true if Stopped

protected void m_tServerMODBUS(void)
Server MODBUS task ...

A.5.4.2 MODBUS Client Class

Class CMODBUSClient

class CMODBUSClient
Provides methods for managing MODBUS Messaging in Client Mode

Stereotype implementationClass

Field Summary
protected

char
GlobalState
State of the MODBUS Client

Constructor Summary
CMODBUSClient(TConfigureObject * lnkConfigureObject)
Constructor : Create internal object , initialize to 0 variables.

Method Summary
int m_ClientReceivingMessage(TItemConnexion * lnkMODBUS)

Interface provided for receiving message from application Layer Typically :
Call CinterfaceUserApplication::m_Read for reading data call
CInterfaceConnexion::m_GetObjectConnexion for getting memory for a
transaction Return negative value if problem

int m_ClientReceivingResponse(TitemConnexion *
lnkTItemConnexion)
Interface with CindicationMsg::m_Confirmation for receiving response from
network return negative value if problem

bool m_Reset(void)
Method for Reseting component return true if reseted

bool m_Start(void)
Method for Starting component return true if started

bool m_Stop(void)
Method for Stoppping component return true if stopped

protected void m_tClientMODBUS(void)
Client MODBUS task....

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 94 – PAS 62030 © IEC:2004 (E)

A.5.4.3 Interface Classes

A.5.4.3.1 Interface Indication class

Class CInterfaceIndicationMsg

Direct Known Subclasses:

CConnexionMngt

class CInterfaceIndicationMsg
Class for sending message from TCP_Management to MODBUS Server or Client

Stereotype interface

Method Summary
int m_MODBUSConfirmation(TItemConnexion * lnkObject)

Method for Receiving incoming Response, calling the Client : could be by
reference, by Message Queue, Remote procedure Call, ...

int m_MODBUSIndication(TItemConnexion * lnkObject)
Method for reading incoming MODBUS Query and calling the Server : could
be by reference, by Message Queue, Remote procedure Call, ...

A.5.4.3.2 Interface Response Class

Class CInterfaceResponseMsg

Direct Known Subclasses:

CMODBUSClient, CMODBUSServer

class CInterfaceResponseMsg
Class for sending response or sending query to TCP_Management from Client or Server

Stereotype interface

Method Summary

TitemConnexion
*

m_GetMemoryConnexion(unsigned long IPDest)
Get an object ITemConnexion from memory pool Return -1 if not enough
memory

int m_MODBUSRequest(TItemConnexion * lnkCMODBUS)
Method for Writing incoming MODBUS Query Client to ConnexionMngt :
could be by reference, by Message Queue, Remote procedure Call, ...

int m_MODBUSResponse(TItemConnexion * lnkObject)
Method for writing Response from MODBUS Server to ConnexionMngt
could be by reference, by Message Queue, Remote procedure Call, ...

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 95 –

A.5.4.4 Connexion Management class

Class CConnexionMngt

class CConnexionMngt
Class that manages all TCP Connections

Stereotype implementationClass

Field Summary
protected

char
GlobalState
Global State of the Component ConnexionMngt

Int NbConnectionSupported
Global number of connections

Int NbLocalConnection
Number of connections opened by the local Client to a remote Server

Int NbRemoteConnection
Number of connections opened by a remote Client to the local Server

Constructor Summary
CconnexionMngt(TConfigureObject * lnkConfigureObject)
Constructor : Create internal object , initialize to 0 variables.

Method Summary
int m_EventOnSocket(void)

wake-up
bool m_IsConnectionAuthorized(unsigned long IPAdress)

Return true if new connection is authorized
int m_ReceiveData(TItemConnexion * lnkConnexion)

Interface with CTCPConnexion::write method for reading data from network
return negative value if problem

bool m_Reset(void)
Method for Resetting ConnectionMngt component return true if Reset

int m_SendData(TItemConnexion * lnkConnexion)
Interface with CTCPConnexion::read method for sending data to the
network Return negative value if problem

bool m_Start(void)
Method for Starting ConnectionMngt component return true if Started

bool m_Stop(void)
Method for Stopping component return true if Stopped

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 96 – PAS 62030 © IEC:2004 (E)

Annex B of Section 1
(Informative)

MODBUS RESERVED FUNCTION CODES, SUBCODES AND MEI TYPES

The following function codes and subcodes shall not be part of this PAS and these function
codes and subcodes are specifically reserved. The format is function code/subcode or just
function code where all the subcodes (0-255) are reserved: 8/19; 8/21-65535, 9, 10, 13, 14,
41, 42, 90, 91, 125, 126 and 127.

Function Code 43 and its MEI Type 14 for Device Identification and MEI Type 13 for
CANopen General Reference Request and Reponse PDU are the currently available
Encapsulated Interface Transports in this PAS.

The following function codes and MEI Types shall not be part of the IEC published
Specification derived from this document and these function codes and MEI Types are
specifically reserved: 43/0-12 and 43/15-255. In this PAS, a User Defined Function code
having the same or similiar result as the Encapsulated Interface Transport is not supported.

Annex C of Section 1
(Informative)

CANOPEN GENERAL REFERENCE COMMAND

Refer to the MODBUS-IDA web site or the CiA (CAN in Automation) website for a copy and
terms of use that cover Function Code 43 MEI Type 13.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 97 –

Section 2 – Real-Time Publish-Subscribe (RTPS) Wire
Protocol Specification Version 1.0

2 RTPS

2.1 Basic Concepts

2.1.1 Introduction

With the explosion of the Internet, the TCP/UDP/IP protocol suite has become the
underlying framework upon which all Internet-based communications are built. Their
success attests to the generality and power of these protocols. However, these transport-level
protocols are too low level to be used directly by any but the simplest applications.
Consequently, higher-level protocols such as HTTP, FTP, DHCP, DCE, RTP, DCOM, and
CORBA have emerged. Each of these protocols fills a niche, providing well-tuned
functionality for specific purposes or application domains.
In network communications, as in many fields of engineering, it is a fact that “one size does
not fit all.” Engineering design is about making the right set of trade-offs, and these trade-
offs must balance conflicting requirements such as generality, ease of use, richness of
features, performance, memory size and usage, scalability, determinism, and robustness.
These trade-offs must be made in light of the types of information flow (e.g. periodic, one-to-
many, request-reply, events), and the constraints imposed by the application and execution
platforms.
The Real-Time Publish-Subscribe (RTPS) Wire Protocol provides two main communication
models: the publish-subscribe protocol, which transfers data from publishers to subscribers;
and the Composite State Transfer (CST) protocol, which transfers state.
The RTPS protocol is designed to run over an unreliable transport such as UDP/IP. The
broad goals for the RTPS protocol design are:

─ Plug and play connectivity so that new applications and services are automatically
discovered and applications can join and leave the network at any time without the
need for reconfiguration.

─ Performance and quality-of-service properties to enable best-effort and reliable
publish- subscribe communications for real-time applications over standard IP
networks.

─ Configurability to allow balancing the requirements for reliability and timeliness
for each data delivery.

─ Modularity to allow simple devices to implement a subset and still participate in
the network.

─ Scalability to enable systems to potentially scale to very large networks.
─ Extensibility to allow the protocol to be extended and enhanced with new services

without breaking backwards compatibility and interoperability.
─ Fault tolerance to allow the creation of networks without single points of failure.
─ Type-safety to prevent application programming errors from compromising the

operation of remote nodes.

This PAS defines the message formats, interpretation, and usage scenarios that underlie all
messages exchanged by applications that use the RTPS protocol.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 98 – PAS 62030 © IEC:2004 (E)

2.1.2 The RTPS Object Model

Figure 31 shows the object model that underlies the RTPS Protocol.

Figure 31 – Object model

The RTPS Protocol runs in a Network of Applications. An Application contains local
Services through which the application sends or receives information using the RTPS
Protocols. The Services are either Readers or Writers. Writers provide locally available data
(a composite state or a stream of issues) on the network. Readers obtain this information
from the network.

There are two broad classes of Writers: Publications and CSTWriters. A Publication is a
Writer that provides issues to one or more instances of a Subscription using the publish-
subscribe protocol and semantics.

The presence of a Publication in an Application indicates that the Application is willing to
publish issues to matching subscriptions. The attributes of the Publication service object
describe the contents (the topic), the type of the issues, and the quality of the stream of issues
that is published on the Network.

There are two broad classes of Readers: Subscriptions and CSTReaders. A Subscription is a
Reader that receives issues from one or more instances of Publication, using the publish-
subscribe service.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 99 –

The presence of a Subscription indicates that the Application wants to receive issues from
Publications for a specific topic on the Network. The Subscription has attributes that
identify the contents (the topic) of the data, the type of the issues and the quality with which
it wants to receive the stream of issues.

The CSTWriter and CSTReader are the equivalent of the Publication and Subscription,
respectively, but are used solely for the state-synchronization protocol and are provided so
that applications have a means to exchange state information about each other.

Every Reader (CSTReader or Subscription) and Writer (CSTWriter or Publication) is part
of an Application. The Application and its Readers and Writers are local, which is indicated
in Figure 31 by the keyword "local" on the relationship between an Application and its
Services.

There are two kinds of Applications: Managers and ManagedApplications. A Manager is a
special Application that helps applications automatically discover each other on the
Network. A ManagedApplication is an Application that is managed by one or more
Managers. Every ManagedApplication is managed by at least one Manager.

The protocol provides two types of functionality:

─ Data Distribution: The RTPS protocol specifies the message formats and
communication protocols that support the publish-subscribe protocol (to send
issues from Publications to Subscriptions) and the Composite State Transfer
(CST) protocol (to transfer state from a CSTWriter to a CSTReader) at various
service levels.

─ Administration: The RTPS protocol defines a specific use of the CST protocol that
enables Applications to obtain information about the existence and attributes of
all the other Applications and Services on the Network. This metatraffic enables
every Application to obtain a complete picture of all Applications, Managers,
Readers and Writers in the Network. This information allows every Application
to send the data to the right locations and to interpret incoming packets.

2.1.3 The Basic RTPS Transport Interface

RTPS is designed to run on an unreliable transport mechanism, such as UDP/IP. The
protocols implement reliability in the transfer of issues and state.

RTPS takes advantage of the multicast capabilities of the transport mechanism, where one
message from a sender can reach multiple receivers.

RTPS is designed to promote determinism of the underlying communication mechanism. The
protocol also provides an open trade-off between determinism and reliability.

2.1.3.1 The Basic Logical Messages

The RTPS protocol uses five logical messages:

─ ISSUE: Contains the Application’s UserData. ISSUEs are sent by Publications to
one or more Subscriptions.

─ VAR: Contains information about the attributes of a NetworkObject, which is part
of a composite state. VARs are sent by CSTWriters to CSTReaders.

─ HEARTBEAT: Describes the information that is available in a Writer.
HEARTBEATs are sent by a Writer (Publication or CSTWriter) to one or more
Readers (Subscription or CSTReader).

─ GAP: Describes the information that is no longer relevant to Readers.

─ ACK: Provides information on the state of a Reader to a Writer.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 100 – PAS 62030 © IEC:2004 (E)

Each of these logical messages are sent between specific Readers and Writers as follows:

─ Publication to Subscription(s): ISSUEs and HEARTBEATs

─ Subscription to a Publication: ACKs

─ CSTWriter to a CSTReader: VARs, GAPs and HEARTBEATs

─ CSTReader to a CSTWriter: ACKs

Readers and Writers are both senders and receivers of RTPS Messages. In the protocol, the
logical messages ISSUE, VAR, HEARTBEAT, GAP and ACK can be combined into a single
message in several ways to make efficient use of the underlying communication mechanism.
clause 2.3 explains the format and construction of a Message.

2.1.3.2 Underlying Wire Representation

RTPS uses the CDR (Common Data Representation) as defined by the Object Management
Group (OMG) to represent all basic data and structures.

Annex A of this section describes CDR and the specific choices that RTPS made in its usage of CDR.

2.1.4 Notational Conventions

2.1.4.1 Name Space

All the definitions in this PAS are part of the “RTPS” name-space. To facilitate reading and
understanding, the name-space prefix has been left out of the definitions and classes in this
PAS. For example, an implementation of RTPS will typically provide the service
RTPSPublication or RTPS::Publication; however, in this document we will use the more
simple Publication.

2.1.4.2 Representation of Structures

The following sections often define structures, such as:
typedef struct {
 octet[3] instanceId;
 octet appKind;
} AppId;

These definitions use the OMG IDL (Interface Definition Language). When these structures
are sent on the wire, they are encoded using the corresponding CDR representation.

Annex A of this section shows what standards describe this notation.

2.1.4.3 Representation of Bits and Bytes

This PAS often uses the following notation to represent an octet or byte:

 +-+-+-+-+-+-+-+-+
 |7|6|5|4|3|2|1|0|
 +-+-+-+-+-+-+-+-+

In this notation, the leftmost bit (bit 7) is the most significant bit ("MSB") and the rightmost
bit (bit 0) is the least significant bit ("LSB").

Streams of bytes are ordered per lines of 4 bytes each as follows:
0...2...........7...............15.............23...............31
+-+
| first byte | | | 4th byte |
+-+

 -----------stream------------->>>>

In such representation, the byte that comes first in the stream is on the left. The bit on the
extreme left is the MSB of the first byte; the bit on the extreme right is the LSB of the 4th byte.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 101 –

2.2 Structure Definitions
This subclause defines the Globally Unique ID (GUID) used to reference objects in a
Network and the basic structures used in the protocol (to represent bitmaps, sequence
numbers, etc.). These structures will be used in the following subclauses where the RTPS
Message is defined.

2.2.1 Referring to Objects: the GUID

The GUID (Globally Unique Id) is a unique reference to an Application or a Service on the
Network.

The GUID is built as a 12-octet triplet: <HostId hostId, AppId appId, ObjectId objectId>.
The GUID should be a globally unique reference to one specific NetworkObject within the
Network.

The HostId and AppId are defined as follows:
typedef octet[4] HostId;

typedef struct {
 octet[3] instanceId;
 octet appKind;
} AppId;

where appKind is one of the following:
0x01 ManagedApplication
0x02 Manager

An implementation based on this version (1.0) of the protocol will consider anything other
than the above two to be an unknown class.

The unknown hostId and appId are defined as follows:
#define HOSTID_UNKNOWN { 0x00, 0x00, 0x00, 0x00 }
#define APPID_UNKNOWN { 0x00, 0x00, 0x00, 0x00 }

2.2.1.1 The GUIDs of Applications

Every Application on the Network has GUID <hostId, appId, OID_APP>, where the constant
OID_APP is defined as follows.

#define OID_APP {0x00,0x00,0x01,0xc1}

The implementation is free to pick the hostId and appId, as long as the last octet of the appId
identifies the appKind and as long as every Application on the Network has a unique GUID.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 102 – PAS 62030 © IEC:2004 (E)

2.2.1.2 The GUIDs of the Services within an Application

The Services that are local to the Application with GUID <hostId, appId, OID_APP> have
GUID <hostId, appId, objectId>. The objectId is the unique identification of the
NetworkObject relative to the Application. The objectId also encapsulates what kind of
NetworkObject this is, whether the object is a user-object or a meta-object and whether the
instanceId is freely chosen by the middleware or is a reserved instanceId, which has special
meaning to the protocol. One example of a reserved (protocol defined) objectId is OID_APP,
which is used in the GUID of Applications.

The ObjectId structure is defined as follows:
typedef struct {
 octet[3] instanceId;
 octet objKind;
} ObjectId;

#define OBJECTID_UNKNOWN { 0x0, 0x0, 0x0, 0x0 }

For objKind, the two most significant bits indicate whether the object is meta-level or user-
level (M- bit) and whether its instanceId is chosen or reserved (R-bit), respectively.

ObjectId:
0...2...........8...............16.............24...............31
+-+
| instanceId |M|R| |
+---------------+---------------+---------------+---------------+

M=1 The NetworkObject is a meta-object: it can be reached through the meta-ports of the
Application to which it belongs (see 2.4).

R=1 The instanceId is reserved; it has a special meaning to the protocol. Subclause 2.5 lists
all reserved instanceId’s.

The last six bits of the objectId define the class to which the object belongs (Application,
Publication, Subscription, CSTWriter, or CSTReader). Table 1 provides an overview. The
meaning of the message IDs is fixed in this major version (1). New objKinds may be added in
higher minor versions as the RTPS object-model is extended with new classes.

2.2.2 Building Blocks of RTPS Messages

This section describes the basic structures that are used inside RTPS Messages.

2.2.2.1 VendorId

This structure identifies the vendor of the middleware implementing the RTPS protocol and
allows this vendor to add specific extensions to the protocol. The vendor ID does not refer to
the vendor of the device or product that contains RTPS middleware.

typedef struct {
 octet major;
 octet minor;
} VendorId;

Table 1 – objKind octet of an objectId
Class of Object Normal

User-object
Reserved

User-object
Normal

Meta-object
Reserved

Meta-object
 unknown 0x00 0x40 0x80 0xc0
 Application 0x01 0x41 0x81 0xc1
 CSTWriter 0x02 0x42 0x82 0xc2
 Publication 0x03 0x43 0x83 0xc3
 Subscription 0x04 0x44 0x84 0xc4
 CSTReader 0x07 0x47 0x87 0xc7

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 103 –

The currently assigned vendor IDs are listed in Table 2.

2.2.2.2 ProtocolVersion

The following structure describes the protocol version.
typedef struct {
 octet major;
 octet minor;
} ProtocolVersion;

Implementations following this version of the PAS implement protocol version 1.0 (major =
1, minor = 0).

#define PROTOCOL_VERSION_1_0 { 0x1, 0x0 }

2.2.2.3 SequenceNumber

A sequence number, N, is a 64-bit signed integer, that can take values in the range:
-2^63 <= N <= 2^63-1.

On the wire, it is represented using two 32-bit integers as follows:
typedef struct {
 long high;
 unsigned long low;
} SequenceNumber;

Using this structure, the sequence number is: high * 2^32 + low.

The sequence number, 0, and negative sequence numbers are used to indicate special cases:
#define SEQUENCE_NUMBER_NONE 0
#define SEQUENCE_NUMBER_UNKNOWN -1

2.2.2.4 Bitmap

Bitmaps are used as parts of several messages to provide binary information about
individual sequence numbers within a range. The representation of the Bitmap includes the
length of the Bitmap in bits and the first SequenceNumber to which the Bitmap applies.

Bitmap:
0...2...........8...............16.............24...............31
+-+
| |
+ SequenceNumber bitmapBase +
| |
+---------------+---------------+---------------+---------------+
| long numBits |
+---------------+---------------+---------------+---------------+
| long bitmap[0] |
+---------------+---------------+---------------+---------------+
| long bitmap[1] |
+---------------+---------------+---------------+---------------+
| ... |
+---------------+---------------+---------------+---------------+
| long bitmap[M-1] M = (numBits+31)/32 |
+---------------+---------------+---------------+---------------+

Given a Bitmap, bitmap, the boolean value of the bit pertaining to SequenceNumber N, where
bitmapBase <= N < bitmapBase+numBits, is:

bit(N) = bitmap[deltaN/32] & (1 << (31 - deltaN%32))

where
deltaN = N - bitmapBase

Table 2 – Vendor IDs
Major Minor Name

 0x00 0x00 VENDOR_ID_UNKNOWN
 0x01 0x01 Real-Time Innovations, Inc., CA, USA

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 104 – PAS 62030 © IEC:2004 (E)

The bitmap does not indicate anything about sequence numbers outside of the range
[bitmapBase, bitmapBase+numBits-1].

A valid bitmap must satisfy the following conditions:

o bitmapBase >= 1

o 0 <= numBits <= 256

o there are M=(numBits+31)/32 longs containing the pertinent bits

This document uses the following notation for a specific bitmap:
 bitmapBase/numBits:bitmap

In the bitmap, the bit corresponding to sequence number bitmapBase is on the left. The
ending "0" bits can be represented as one "0".

For example, in bitmap “1234/12:00110”, bitmapBase=1234 and numBits=12. The bits apply
as follows to the sequence numbers:

Table 3 – Example of bitmap: meaning of "1234/12:00110”

Sequence Bit
 1234 0
 1235 0
 1236 1
 1237 1
 1238-1245 0

2.2.2.5 NtpTime

Timestamps follow the NTP standard and are represented on the wire as a pair of integers
containing the high- and low-order 32 bits:

typedef struct {
 long seconds; // time in seconds
 unsigned long fraction; // time in seconds / 2^32
NtpTime;

Time is expressed in seconds using the following formula:
seconds + (fraction / 2^(32))

The RTPS protocol does not require a concept of absolute time.

2.2.2.6 IPAddress

An IP address is a 4-byte unsigned number:
typedef unsigned long IPAddress

An IP address of zero is an invalid IP address:
#define IPADDRESS_INVALID 0

The mapping between the dot-notation "a.b.c.d" of an IP address and its representation as an
unsigned long is as follows:

IPAddress ipAddress = (((a * 256 + b) * 256) + c) * 256 + d

For example, IP address "127.0.0.1" corresponds to the unsigned long number 2130706433 or
0x7F000001.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 105 –

2.2.2.7 Port

A port number is a 4-byte unsigned number:
typedef unsigned long Port

The port number zero is an invalid port-number:
#define PORT_INVALID 0

If a port number represents an IPv4 UDP port, only the range of unsigned short numbers
from 0x1 to 0x0000ffff is valid.

2.3 RTPS Message Format

2.3.1 Overall Structure of RTPS Messages

The overall structure of a Message includes a leading Header followed by a variable number
of Submessages. Each Submessage starts aligned on a 32-bit boundary with respect to the
start of the Message.

Message:
0...2...........7...............15.............23...............31
+-+
| Header |
+-+
| Submessage |
+-+
...
+-+
| Submessage |
+-+

A Message has a well-known length. This length is not sent explicitly by the RTPS protocol
but is part of the underlying transport with which Messages are sent. In the case of UDP/IP,
the length of the Message is the length of the UDP payload.

2.3.2 Submessage Structure

The general structure of each Submessage in a Message is as follows:
Submessage:
0...2...........7...............15.............23...............31
+-+
| submessageId | flags |E| ushort octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
~ contents of submessage ~
| |
+---------------+---------------+---------------+---------------+

This general structure cannot change in this major version (1) of the protocol. Subclauses
 2.3.2.1 through 2.3.2.3 describe the meaning of the three fields of the submessage header:
submessageId, flags and octetsToNextHeader.

2.3.2.1 submessageId in the Submessage Header

This octet identifies the kind of Submessage. Submessages with IDs 0x00 to 0x7f (inclusive)
are protocol-specific. They are defined as part of the RTPS protocol. Version 1.0 defines the
following submessages:

enum SubmessageId {
PAD = 0x01,
VAR = 0x02,
ISSUE = 0x03,
ACK = 0x06,
HEARTBEAT = 0x07,
GAP = 0x08,
INFO_TS = 0x09,
INFO_SRC = 0x0c,
INFO_REPLY = 0x0d,
INFO_DST = 0x0e
};

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 106 – PAS 62030 © IEC:2004 (E)

The meaning of the submessage IDs cannot be modified in this major version (1). Additional
submessages can be added in higher minor versions. Submessages with ID's 0x80 to 0xff
(inclusive) are vendor-specific; they will not be defined by the protocol. Their interpretation
is dependent on the vendorId that is current when the submessage is encountered. Section
describes how the current vendorId is determined. The current list of vendorId’s is provided in
 2.2.2.1 .

2.3.2.2 Flags in the Submessage Header

The least-significant bit (LSB) of the flags is always present in all Submessages and
represents the endianness used to encode the information in the Submessage. E=0 means
big-endian, E=1 means little-endian.

Other bits in the flag have interpretations that depend on the type of Submessage.

In the following descriptions of the Submessages, the character 'X' is used to indicate a flag
that is unused in version 1.0 of the protocol. RTPS implementations of version 1.0 should set
these to zero when sending and ignore these when receiving. Higher minor versions of the
protocol can use these flags.

2.3.2.3 octetsToNextHeader in the Submessage Header

The final two octets of the Submessage header contain the number of octets from the first
octet of the contents of the submessage until the first octet of the header of the next
Submessage. The representation of this field is a CDR unsigned short (ushort). If the
Submessage is the last one in the Message, the octetsToNextHeader field contains the number
of octets remaining in the Message.

2.3.3 How to Interpret a Message

The interpretation and meaning of a Submessage within a Message may depend on the
previous Submessages within that same Message. Therefore the receiver of a Message must
maintain state from previously deserialized Submessages in the same Message.

sourceVersion The major and minor version with which the following submessages need to be
interpreted.

sourceVendorId The vendor identification with which the following vendor-specific extensions
need to be interpreted.

sourceHostId, sourceAppId The originator’s host and application identifiers. The following
submessages need to be identified as if they are coming from this host and application.

destHostId, destAppId The destination’s host and application identifiers. The following
submessages need to be identified as if they are meant for this host and application.

unicastReplyIPAddress, unicastReplyPort An explicit IP address and port that provides an
additional direct way for the receiver to reply directly to the originator over unicast.

multicastReplyIP Address, multicastReplyPort An explicit IP address and port that provides an
additional direct way for the receiver to reach the originator (and potentially many
others) over multicast.

haveTimestamp, timestamp The timestamp applying to all the following submessages.

2.3.3.1 Rules Followed By A Message Receiver

The following algorithm outlines the rules that a receiver of any Message must follow:

1. If a 4-byte Submessage header cannot be read, the rest of the Message is
considered invalid.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 107 –

2. The last two bytes of a Submessage header, the octetsToNextHeader field, contains
the number of octets to the next Submessage. If this field is invalid, the rest of
the Message is invalid.

3. The first byte of a Submessage header is the submessageId. A Submessage with an
unknown ID must be ignored and parsing must continue with the next
Submessage. Concretely: an implementation of RTPS 1.0 must ignore any
Submessages with IDs that are outside of the SubmessageId list used by version
1.0. IDs in the vendor-specific range coming from a vendorId that is unknown
must be ignored and parsing must continue with the next Submessage.

4. The second byte of a Submessage header contains flags; unknown flags should be
skipped. An implementation of RTPS 1.0 should skip all flags that are marked as
“X” (unused) in the protocol.

5. A valid octetsToNextHeader field must always be used to find the next
Submessage, even for Submessages with unknown IDs.

6. A known but invalid Submessage invalidates the rest of the Message. Subclauses
 2.3.5 through 2.3.14 each describe known Submessage and when it should be
considered invalid.

Reception of a valid header and/or submessage has two effects:

─ It can change the state of the receiver; this state influences how the following
Submessages in the Message are interpreted. Subclauses 2.3.5 through 2.3.14
show how the state changes for each Submessage. In this version of the protocol,
only the Header and the Submessages INFO_SRC, INFO_REPLY and INFO_TS
change the state of the receiver.

─ The Submessage, interpreted within the Message, has a logical interpretation: it
encodes one of the five basic RTPS messages: ACK, GAP, HEARTBEAT, ISSUE
or VAR.

Subclauses 2.3.5 through 2.3.14 describe the detailed behavior of the Header and every
Submessage.

2.3.4 Header

This is the Header found at the beginning of every Message.

2.3.4.1 Format

0...2...........7...............15.............23...............31
+-+
| 'R' | 'T' | 'P' | 'S' |
+---------------+---------------+---------------+---------------+
| ProtocolVersion version | VendorId vendorId |
+---------------+---------------+---------------+---------------+
| HostId hostId |
+---------------+---------------+---------------+---------------+
| AppId appId |
+---------------+---------------+---------------+---------------+

2.3.4.2 Validity

A Header is invalid when any of the following are true:

─ The Message has less than the required number of octets to contain a full
Header.

─ Its first four octets are not ’R’ ’T’ ’P’ ’S’.

─ The major protocol version is larger than the major protocol version supported
by the implementation.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 108 – PAS 62030 © IEC:2004 (E)

2.3.4.3 Change in State of the Receiver

sourceHostId = Header.hostId
sourceAppId = Header.appId
sourceVersion = Header.version
sourceVendorId = Header.vendorId
haveTimestamp = false

2.3.4.4 Logical Interpretation

None

2.3.5 ACK

This submessage is used to communicate the state of a Reader to a Writer.

2.3.5.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| ACK |X|X|X|X|X|X|F|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| |
~ Bitmap bitmap ~
| |
+---------------+---------------+---------------+---------------+

2.3.5.2 Validity

This submessage is invalid when any of the following is true:

─ octetsToNextHeader is too small.

─ bitmap is invalid.

2.3.5.3 Change in State of the Receiver

None

2.3.5.4 Logical Interpretation

FINAL-bit ACK.F : When the F-bit is set, the application sending the ACK does not expect a
response to the ACK.

readerGUID <sourceHostId, sourceAppId, ACK.readerObjectId> : The GUID of the Reader that
acknowledges receipt of certain sequence numbers and/or requests to receive certain
sequence numbers.

Table 4 – Interpretation of ACK Submessage
Field Value

 FINAL-bit ACK.F
 readerGUID <sourceHostId, sourceAppId, ACK.readerObjectId>
 writerGUID <destHostId, destAppId, ACK.writerObjectId>
 replyIPAddressPortList {

 unicastReplyIPAddress:unicastReplyPort,
 multicastReplyIPAddress:multicastReplyPort
 }

 bitmap ACK.bitmap

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 109 –

writerGUID <destHostId, destAppId, ACK.writerObjectId> : The GUID of the Writer that the
reader has received these sequence numbers from and/or wants to receive these
sequence numbers from.

replyIPAddressPortList { unicastReplyIPAddress : unicastReplyPort, multicastReplyIPAddress :
multicastReplyPort } : This is an additional list of addresses that the receiving application
can use to respond to this ACK.

bitmap ACK.bitmap : A “0” in this bitmap means that the corresponding sequence-number is
missing. A “1” in the bitmap conveys no information, that is, the corresponding
sequence number may or may not be missing. By sending an ACK, the readerGUID
object acknowledges receipt of all messages up to and including the sequence number
(bitmap.bitmapBase -1).

2.3.6 GAP

This submessage is sent from a CSTWriter to a CSTReader to indicate that a range of
sequence numbers is no longer relevant. The set may be a contiguous range of sequence
numbers or a specific set of sequence numbers.

2.3.6.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| GAP |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber firstSeqNumber +
| |
+---------------+---------------+---------------+---------------+
| |
~ Bitmap bitmap ~
| |
+---------------+---------------+---------------+---------------+

2.3.6.2 Validity

This submessage is invalid when any of the following are true:

─ octetsToNextHeader is too small.

─ bitmap is invalid.

─ firstSeqNumber is 0 or negative.

2.3.6.3 Change in State of the Receiver

None

2.3.6.4 Logical Interpretation

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 110 – PAS 62030 © IEC:2004 (E)

readerGUID <destHostId, destAppId, GAP.readerObjectId> : The GUID of the CSTReader for
which the gapList is meant. The GAP.readerObjectId can be OBJECTID_UNKNOWN,
in which case the GAP applies to all Readers within the Application <destHostId,
destAppId>.

writerGUID <sourceHostId, sourceAppId, GAP.writerObjectId> : The GUID of the CSTWriter to
which the gapList applies.

ACKIPAddressPortList { unicastReplyIPAddress : unicastReplyPort } : If the CSTReader that
receives this submessage needs to reply with an ACK submessage, then this ACK can
be sent to one of the explicit destinations in this list.

gapList The list of sequence numbers that are no longer available in the writerObject. This list
is the union of:

─ All the sequence numbers in the range from GAP.firstSeqNumber up to
GAP.bitmap.bitmapBase - 1. This list is empty if the firstSeqNumber is greater than or
equal to the bitmapBase of the bitmap. GAP.firstSeqNumber should always be greater
than or equal to 1.

and

─ The sequence numbers that have the corresponding bit in the bitmap set to 1.

2.3.6.5 Example

A GAP with:

─ firstSeqNumber = 12

─ bitmap = 17/5:0011101

means that the gapList = {12, 13, 14, 15, 16, 19, 20, 22}.

2.3.7 HEARTBEAT

This message is sent from a Writer to a Reader to communicate the sequence numbers of
data that the Writer has available.

Table 5 – Interpretation of GAP Submessage
Field Value

 readerGUID <destHostId, destAppId, GAP.readerObjectId>
 writerGUID <sourceHostId, sourceAppId, GAP.writerObjectId>
 ACKIPAddressPortList {

 unicastReplyIPAddress:unicastReplyPort
 }

 gapList {
 GAP.firstSeqNumber,
 GAP.firstSeqNumber+1,...,
 GAP.bitmap.bitmapBase-1
 }
 and
 all sequence numbers that have a corresponding bit set to 1 in the
bitmap

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 111 –

2.3.7.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| HEARTBEAT |X|X|X|X|X|X|F|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber firstSeqNumber +
| |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber lastSeqNumber +
| |
+---------------+---------------+---------------+---------------+

2.3.7.2 Validity

This submessage is invalid when any of the following are true:

─ octetsToNextHeader is too small.

─ firstSeqNumber is less than 0.

─ lastSeqNumber is less than 0.

─ lastSeqNumber is strictly less than firstSeqNumber.

2.3.7.3 Change in State of the Receiver

None

2.3.7.4 Logical Interpretation

FINAL-bit HEARTBEAT.F : When the F-bit is set, the application sending the HEARTBEAT
does not require a response.

readerGUID <destHostId, destAppId, HEARTBEAT.readerObjectId> : The Reader to which the
heartbeat applies. The HEARTBEAT.readerObjectId can be OBJECTID_UNKNOWN, in
which case the HEARTBEAT applies to all Readers of that writerGUID within the
Application <destHostId, destAppId>.

writerGUID <sourceHostId, sourceAppId, HEARTBEAT.writerObjectId> : The Writer to which the
HEARTBEAT applies.

ACKIPAddressPortList { unicastReplyIPAddress : unicastReplyIPPort } : An additional list of
destinations where responses (ACKs) to this submessage can be sent.

firstSeqNumber HEARTBEAT.firstSeqNumber : The first sequence number, firstSeqNumber, that is
still available and meaningful in the writerObject. This field must be greater than or

Table 6 – Interpretation of HEARTBEAT Submessage
Field Value

 FINAL-bit HEARTBEAT.F
 readerGUID <destHostId, destAppId, HEARTBEAT.readerObjectId>
 writerGUID <sourceHostId, sourceAppId, HEARTBEAT.writerObjectId>
 ACKIPAddressPortList {

 unicastReplyIPAddress:unicastReplyIPPort
 }

 firstSeqNumber HEARTBEAT.firstSeqNumber
 lastSeqNumber HEARTBEAT.lastSeqNumber

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 112 – PAS 62030 © IEC:2004 (E)

equal to zero. If it is equal to SEQUENCE_NUMBER_NONE, the Writer has no data
available.

lastSeqNumber HEARTBEAT.lastSeqNumber : The last sequence number, lastSeqNumber, that is
available in the Writer. This field must be greater than or equal to firstSeqNumber. If
firstSeqNumber is SEQUENCE_NUMBER_NONE, lastSeqNumber must also be
SEQUENCE_NUMBER_NONE.

2.3.8 INFO_DST

This submessage modifies the logical destination of the submessages that follow it.

2.3.8.1 Submessage Format
0...2...........7...............15.............23...............31
+-+
|INFO_DST |X|X|X|X|X|X|X|E|octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| HostId hostId |
+---------------+---------------+---------------+---------------+
| AppId appId |
+---------------+---------------+---------------+---------------+

2.3.8.2 Validity

This submessage is invalid when:

─ octetsToNextHeader is too small.

2.3.8.3 Change In State Of The Interpreter
if(INFO_DST.hostId != HOSTID_UNKNOWN) {
 destHostId = INFO_DST.hostId
} else {
 destHostId = hostId of application receiving the message
}

if(INFO_DST.appId != APPID_UNKNOWN) {
 destAppId = INFO_DST.appId
} else {
 destAppId = appId of application receiving the message
}

In other words, an INFO_DST with a HOSTID_UNKNOWN means that any host may
interpret the following submessages as if they were meant for it. Similarly, an INFO_DST
with a APPID_UNKNOWN means that any application may interpret the following
submessages as if they were meant for it.

2.3.8.4 Logical Interpretation
None; this only affects the interpretation of the submessages that follow it.

2.3.9 INFO_REPLY

This submessage contains explicit information on where to send a reply to the submessages
that follow it within the same message.

2.3.9.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
|INFO_REPLY |X|X|X|X|X|X|M|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| IPAddress unicastReplyIPAddress |
+---------------+---------------+---------------+---------------+
| Port unicastReplyPort |
+---------------+---------------+---------------+---------------+
| IPAddress multicastReplyIPAddress [only if M==1] |
+---------------+---------------+---------------+---------------+
| Port multicastReplyPort [only if M==1] |
+---------------+---------------+---------------+---------------+

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 113 –

2.3.9.2 Validity

This submessage is invalid when the following is true:

─ octetsToNextHeader is too small.

2.3.9.3 Change in State of the Receiver

if (INFO_REPLY.unicastReplyIPAddress != IPADDRESS_INVALID) {
 unicastReplyIPAddress = INFO_REPLY.unicastReplyIPAddress;
}
unicastReplyPort = INFO_REPLY.replyPort
if (M==1) {
 multicastReplyIPAddress = INFO_REPLY.multicastReplyIPAddress
 multicastReplyPort = INFO_REPLY.multicastReplyPort
} else {
 multicastReplyIPAddress = IPADDRESS_INVALID
 multicastReplyPort = PORT_INVALID
}

2.3.9.4 Logical Interpretation

None, this only affects the interpretation of the submessages that follow it.

2.3.10 INFO_SRC

This submessage modifies the logical source of the submessages that follow it.

2.3.10.1 Submessage Format
0...2...........7...............15.............23...............31
+-+
| INFO_SRC |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| IPAddress appIPAddress |
+---------------+---------------+---------------+---------------+
| ProtocolVersion version | VendorId vendorId |
+---------------+---------------+---------------+---------------+
| HostId hostId |
+---------------+---------------+---------------+---------------+
| AppId appId |
+---------------+---------------+---------------+---------------+

2.3.10.2 Validity

This submessage is invalid when the following is true:

─ octetsToNextHeader is too small.

2.3.10.3 Change in State of the Receiver

sourceHostId = INFO_SRC.hostId
sourceAppId = INFO_SRC.appId
sourceVersion = INFO_SRC.version
sourceVendorId = INFO_SRC.vendorId
unicastReplyIPAddress = INFO_SRC.appIPAddress
unicastReplyPort = PORT_INVALID
multicastReplyIPAddress = IPADDRESS_INVALID
multicastReplyPort = PORT_INVALID
haveTimestamp = false

2.3.10.4 Logical Interpretation

None, this only affects the interpretation of the submessages that follow it.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 114 – PAS 62030 © IEC:2004 (E)

2.3.11 INFO_TS

This submessage is used to send a timestamp which applies to the submessages that follow
within the same message.

2.3.11.1 Submessage Format
0...2...........7...............15.............23...............31
+-+
| INFO_TS |X|X|X|X|X|X|I|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ NtpTime ntpTimestamp [only if I==0] +
| |
+---------------+---------------+---------------+---------------+

2.3.11.2 Validity

This submessage is invalid when the following is true:

─ octetsToNextHeader is too small.

2.3.11.3 Change in State of the Receiver

if (INFO_TS.I==0) {
 haveTimestamp = true
 timestamp = INFO_TS.ntpTimestamp
} else {
 haveTimestamp = false
}

2.3.11.4 Logical Interpretation

None, this only affects the interpretation of the submessages that follow it.

2.3.12 ISSUE

This submessage is used to send issues from a Publication to a Subscription.

2.3.12.1 Submessage Format
0...2...........7...............15.............23...............31
+-+
| ISSUE |X|X|X|X|X|X|P|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber issueSeqNumber +
| |
+---------------+---------------+---------------+---------------+
| |
+ ParameterSequence parameters [only if P==1] +
| |
+---------------+---------------+---------------+---------------+
| |
~ UserData issueData ~
| |
+---------------+---------------+---------------+---------------+

2.3.12.2 Validity

This submessage is invalid when any of the following are true:

─ octetsToNextHeader is too small.

─ issueSeqNumber is either not strictly positive (1,2,...) or is not SEQUENCE_
NUMBER_UNKNOWN.

─ the parameter sequence is invalid.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 115 –

2.3.12.3 Change in State of the Receiver

None

2.3.12.4 Logical Interpretation

subscriptionGUID <destHostid, destAppId, ISSUE.readerObjectId> : The Subscription for which
the ISSUE is meant. The ISSUE.readerObjectId can be OBJECTID_UNKNOWN, in
which case the ISSUE applies to all Subscriptions within the Application <destHostId,
destAppId>.

publicationGUID <sourceHostId, sourceAppId, ISSUE.writerObjectId> : The Publication object that
originated this issue.

issueSeqNumber ISSUE.issueSeqNumber : The sequence number of this issue; this should either
be a strictly positive number (1,2,3,...) or the special sequence-number
SEQUENCENUMBER_UNKNOWN. The latter may be used by a simple publication
that does not number consecutive issues.

parameters (optional) ISSUE.parameters : This is present iff P == 1. These parameters will allow
future extensions of the protocol. An implementation of RTPS 1.0 can ignore the
contents of this ParameterSequence.

ACKIPAddressPortList { unicastReplyIPAddress : unicastReplyPort } : The destinations to which
the Publication can send an ACK message in response to this ISSUE.

timestamp (optional) Timestamp of this issue. This is present iff Timestamp == true.

issueData ISSUE.issueData : The actual user data in this issue.

2.3.13 PAD

This submessage has no meaning.

2.3.13.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| PAD |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+

Table 7 – Interpretation of ISSUE Submessage
Field Value

 subscriptionGUID <destHostid, destAppId, ISSUE.readerObjectId>
 publicationGUID <sourceHostId, sourceAppId, ISSUE.writerObjectId>
 issueSeqNumber ISSUE.issueSeqNumber
 (parameters) ISSUE.parameters (iff ISSUE.P==1)
 ACKIPAddressPortList {

 unicastReplyIPAddress:unicastReplyPort
 }

 (timestamp) timestamp
 (present iff haveTimestamp == true)

 issueData ISSUE.issueData

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 116 – PAS 62030 © IEC:2004 (E)

2.3.13.2 Validity

This submessage is always valid.

2.3.13.3 Change in State of the Receiver

None

2.3.13.4 Logical Submessage Generated On Reception

None; the receiver skips the PAD using octetsToNextHeader.

2.3.14 VAR

This submessage is used to communicate information about a NetworkObject (which is part
of the Composite State). It is sent from a CSTWriter to a CSTReader.

2.3.14.1 Submessage Format

0...2...........7...............15.............23...............31
+-+
| VAR |X|X|X|X|H|A|P|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| ObjectId readerObjectId |
+---------------+---------------+---------------+---------------+
| ObjectId writerObjectId |
+---------------+---------------+---------------+---------------+
| HostId hostId (iff H==1) |
+---------------+---------------+---------------+---------------+
| AppId appId (iff H==1) |
+---------------+---------------+---------------+---------------+
| ObjectId objectId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber writerSeqNumber +
| |
+---------------+---------------+---------------+---------------+
| |
~ ParameterSequence parameters [only if P==1] ~
| |
+---------------+---------------+---------------+---------------+

2.3.14.2 Validity

This submessage is invalid when any of the following are true:

─ octetsToNextHeader is too small.

─ writerSeqNumber is not strictly positive (1, 2, ...) or is SEQUENCE_NUMBER_
UNKNOWN.

─ the parameter sequence is invalid.

2.3.14.3 Change in State of the Receiver

None

2.3.14.4 Logical interpretation

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 117 –

readerGUID <destHostId, destAppId, VAR.readerObjectId> : The Reader to which the heartbeat
applies. The VAR.readerObjectId can be OBJECTID_UNKNOWN, in which case the
VAR applies to all Readers of that writerGUID within the Application <destHostId,
destAppId>.

writerGUID <sourceHostId, sourceAppId, VAR.writerObjectId> : The CSTWriter that sent the
information.

objectGUID <VAR.hostId, VAR.appId, VAR.objectId> (iff H == 1) or <sourceHostId, sourceAppId,
VAR.objectId> (iff H == 0) : The object this information (contained in the parameters) is
about.

writerSeqNumber VAR.writerSeqNumber : Incremented each time a change in the Composite
State provided by the CSTWriter occurs. This should be a strictly positive number (1,
2, ...). Or, the special sequence number, SEQUENCE_NUMBER_UNKNOWN, may be
sent to indicate that the sender does not keep track of the sequence number.

timestamp (optional) current.timestamp : This is present iff curent.haveTimestamp == true.
Timestamp of the new parameters sent with this submessage.

parameters (optional) VAR.parameters : This is present iff VAR.P == 1. Contains information
about the object.

ALIVE-bit VAR.A : See 2.7 .
ACKIPAddressPortList { unicastReplyIPAddress : unicastReplyIPPort, writer->IPAddressPortList() } :

Where to sent ACKs in reply to this submessage.

2.3.15 Versioning and Extensibility

An implementation based on this version (1.0) of the protocol should be able to process RTPS
messages not only with the same major version (1) but possibly higher minor versions.

2.3.15.1 Allowed Extensions Within This Major Version

Within this major version, future minor versions of the protocol can augment the protocol in
the following ways:

─ Additional submessages with other submessageIds can be introduced and used
anywhere in an RTPS message. Therefore, a 1.0 implementation should skip over
unknown submessages (using the octetsToNextHeader field in the submessage
header).

Table 8 – Interpretation of VAR Submessage
Field Value

 readerGUID <destHostId, destAppId, VAR.readerObjectId>
 writerGUID <sourceHostId, sourceAppId, VAR.writerObjectId>
 objectGUID <VAR.hostId, VAR.appId, VAR.objectId> (iff H == 1)

 <sourceHostId, sourceAppId, VAR.objectId> (iff H == 0)
 writerSeqNumber VAR.writerSeqNumber
 (timestamp) current.timestamp if curent.haveTimestamp == true
 (parameters) VAR.parameters and VAR.P
 ALIVE-bit VAR.A
 ACKIPAddressPortList {

 unicastReplyIPAddress:unicastReplyIPPort,
 writer->IPAddressPortList()
 }

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 118 – PAS 62030 © IEC:2004 (E)

─ Additional fields can be added to the end of a submessage that was already
defined in the current minor version. Therefore, a 1.0 implementation should skip
over possible additional fields in a submessage using the octetsToNextHeader field.

─ Additional object-kinds and built-in objects with new IDs can be added; these
should be ignored by the 1.0 implementation.

─ Additional parameters with new IDs can be added; these should be ignored by the
1.0 implementation.

All such changes require an increase of the minor version number.

2.3.15.2 What Cannot Change Within This Major Version

The following items cannot be changed within the same major version:

─ A submessage cannot be deleted.

─ A submessage cannot be modified except as described in 2.3.15.1 .

─ The meaning of the submessageIds (described in 2.3.2.1) cannot be modified.

All such changes require an increase of the major version number.

2.4 RTPS and UDP/IPv4
This section describes the mapping of RTPS on UDP/IP v4.

2.4.1 Concepts

2.4.1.1 RTPS Messages and the UDP Payload

When RTPS is used over UDP/IP, a Message is the contents (payload) of exactly one
UDP/IP Datagram.

2.4.1.2 UDP/IP Destinations

A UDP/IP destination consists of an IPAddress and a Port. This document uses notation
such as "12.44.123.92:1024" or "225.0.1.2:6701" to refer to such a destination. The IP address
can be a unicast or multicast address.

2.4.1.3 Note On Relative Addresses

The RTPS protocol often sends IP addresses to a sender of Messages, so that the sender
knows where to send future Messages. These destinations are always interpreted locally by
the sender of UDP datagrams. Certain IP addresses, such as "127.0.0.1" have only relative
meaning (i.e. they do not refer to a unique host).

2.4.2 RTPS Packet Addressing

The following subclauses describe how a sending application can construct a list of
IPAddress:Port pairs that it can use to send Messages to remote Services. Every Service has
a method, IPAddressPortList(), that represents this list. This IPAddressPortList is gathered
by combining four sources:

─ The well-known ports of the Network.

─ The attributes of the Application in which the Service exists, as well as whether
the Application is a Manager or a ManagedApplication.

─ Whether the Service is user-level or meta-level (M-bit in the GUID).

─ Additional attributes of the Service itself.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 119 –

The sender’s implementation is free to send the information to any valid destination(s) in
this list and is encouraged to make good choices, depending on its network interfaces,
resources or optimization concerns.

2.4.2.1 Well-known Ports

At the Network level, RTPS uses the following three well-known ports:
wellknownManagerPort = portBaseNumber + 10 * portGroupNumber

wellknownUsertrafficMulticastPort =
 1 + portBaseNumber + 10 * portGroupNumber
wellknownMetatrafficMulticastPort =
 2 + portBaseNumber + 10 * portGroupNumber

Within a Network, all applications need to use the same portBaseNumber. Applications that
want to communicate with each other use the same portGroupNumber; applications that
need to be isolated from each other use a different portGroupNumber.

Each application needs to be configured with the correct portBaseNumber and
portGroupNumber.

Except for the rules stated above, RTPS does not define which portBaseNumber and
portGroupNumber are used nor how the Applications participating in a Network obtain this
information.

2.4.2.2 Relevant Attributes of an Application

The relevant attributes of an Application are:

unicastIPAddressList These are the unicast IP addresses of the Application; they are the
unicast IP addresses of the host on which the Application runs (there can be multiple
addresses on a multi-NIC host). Depending on the network topology, a sending
application might only be able to address that application on a subset of these IP
addresses.

metatrafficMulticastIPAddressList For the purposes of meta-traffic, an Application can also
accept Messages on this set of multicast addresses.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 120 – PAS 62030 © IEC:2004 (E)

usertrafficUnicastPort and metatrafficUnicastPort Every Application has exactly two
application-dependent ports where it receives unicast user-traffic and unicast meta-
traffic, respectively. A datagram sent to one of the application’s unicast IP addresses
and to one of these ports should only be received by one Application.

These attributes define two lists of UDP destinations. The first list, represented by the
method usertrafficAddressPortList(), is used for user data; the second list,
metatrafficAddressPortList(), is used for the RTPS metatraffic. These lists are defined as
follows:

Application::metatrafficIPAddressPortList() =
{
unicastIPAddressList[] : metatrafficUnicastPort,
metatrafficMulticastIPAddressList[] :
wellknownMetatrafficMulticastPort
}

Application::usertrafficIPAddressPortList() =
{
unicastIPAddressList[] : usertrafficUnicastPort
}

RTPS messages sent to the multicast destinations can be received by multiple applications on
multiple hosts.

2.4.2.3 Manager

For the special case of a Manager, these lists are defined as follows:
Manager::metatrafficIPAddressPortList() =
{
unicastIPAddressList[] : wellknownManagerPort,
metatrafficMulticastIPAddressList[] : wellknownManagerPort
}

A manager receives all data on one well-known port, the wellknownManagerPort.
Manager::usertrafficIPAddressPortList() = NULL

A Manager does not handle user data, only meta-data.

2.4.2.4 Definition of the IPAddressPortList()

A distinction needs to be made between a Reader and a Writer.

A Writer that is a meta-object is addressed through the metatraffic ports of the Application
to which it belongs; if the Writer is a user-object, it is addressed through its Application’s
user-data ports:

iff user-object
Writer::IPAddressPortList() = Application()->usertrafficIPAddressPortList()

iff meta-object
Writer::IPAddressPortList() = Application()->metatrafficIPAddressPortList()

Note that the GUID of the object immediately shows whether the object is a meta-object or a
user- object.

A Reader (such as a Subscription) has an additional attribute:
usertrafficMulticastIPAddressList.

The IPAddressPortList of a Reader is defined as follows:
iff user-object
Reader::IPAddressPortList() =
 {
 Application()->usertrafficIPAddressPortList(),
 usertrafficMulticastIPAddressList[] : wellknownUsertrafficMulticastPort
 }

iff meta-object
Reader::IPAddressPortList() = Application()->metatrafficIPAddressPortList()

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 121 –

A user-level Reader can be addressed by unicast over the destination in the
usertrafficIPAddressPortList of the Application to which it belongs or by sending UDP
multicast to the additional multicast addresses the Reader provides at the
wellknownUsertrafficMulticastPort.

A meta-Reader is addressed through the metatrafficIPAddressPortList of the application to
which it belongs.

2.4.3 Possible Destinations for Specific Submessages

This section lists the UDP/IP destinations to which the basic Submessages (ACK,
HEARTBEAT, GAP, ISSUE and VAR) can be sent.

2.4.3.1 Possible Destinations of an ACK

An ACK is usually sent to one of the known ports of the Writer (this could be a Publication
or a CSTWriter) for which the ACK is meant (these ports are defined in 2.4.2.4 as writer-
>IPAddressPortList()).

An ACK can also be sent in response to a VAR, HEARTBEAT, GAP or ISSUE. The logical
interpretation of these submessages explicitly contains an ACKIPAddressPortList, which
contains possible additional destinations where such an ACK can be sent.

2.4.3.2 Possible Destinations of a GAP

A GAP is normally sent to a CSTReader which can be addressed through the
reader->IPAddressPortList(), defined in 2.4.2.4 .

A GAP can also be sent in response to an ACK, in which case the GAP can be sent to one of
the destinations in the logical replyIPAddressPortList of the ACK.

2.4.3.3 Possible Destinations of a HEARTBEAT

A HEARTBEAT is sent to a Reader, reader, (either a CSTReader or a Subscription); which
can be addressed on reader->IPAddressPortList(), defined in 2.4.2.4 .

A HEARTBEAT can also be sent in response to an ACK, in which case the HEARTBEAT can
be sent to one of the destinations in the logical replyIPAddressPortList of the ACK.

2.4.3.4 Possible Destinations of an ISSUE

To address a Subscription, sub, (a subclass of a Reader), this submessage needs to be sent to
one of the destinations in sub->IPAddressPortList().

An ISSUE can also be sent in response to an ACK, in which case the ISSUE can also be sent
to one of the destinations in the logical replyIPAddressPortList of the ACK.

2.4.3.5 Possible Destinations of a VAR

To address a Reader, reader, the VAR is sent to one of the address/ports in
reader->IPAddressPortList().

A VAR can also be sent in response to an ACK, in which case the VAR can also be sent to
one of the destinations in the logical replyIPAddressPortList of the ACK.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 122 – PAS 62030 © IEC:2004 (E)

2.5 Attributes of Objects and Metatraffic

2.5.1 Concept

Figure 32 shows an overview of all the attributes of the NetworkObjects. Some of the
attributes are frozen, indicated by the symbol "@" in front of them. The value of a frozen
attribute cannot change during the life of the object. All attributes of a NetworkObject
(except for its GUID) have default values.

Figure 32 – Object attributes

The protocol uses the CST protocol to convey information about the creation, destruction
and attributes of Objects (Applications and their Services) on the Network.

On the wire, the attributes of the objects are encoded in the ParameterSequence that is part
of the VAR submessage (see 2.3.14). The information in the ParameterSequence applies to
the object with GUID objectGUID. This GUID immediately encodes the class of the object
and, therefore, the relevant attributes of the object and their default values.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 123 –

When the parameter sequence does not contain information about an attribute that is part of
the class, the receiving application may assume that attribute has the default value.

The semantics of these classes and their attributes cannot be changed in this major version
(1) of the protocol. Higher minor versions can extend this model in two ways:

─ New classes may be added.

─ New attributes may be added to the existing classes.

Table 9 shows the attributes of a ManagedApplication. The convention followed is that a
preceding “@” denotes that the attribute is frozen and thus cannot be changed. A trailing “[
]” denotes an array that indicates that the attribute can be repeated. A Manager submessage
has the contents described in Table 9 and another attribute described in Table 10. The
description of the types are included in 6.1.

The next two tables represent the Publication and Subscription attributes, respectively.

Table 9 – ManagedApplication Attributes
Attributes Type Default

 unicastIPAddressList [] IPAddress { }
 @protocolVersion ProtocolVersion PROTOCOL_VERSION_1_0
 @vendorId VendorId VENDOR_ID_UNKNOWN
 @expirationTime NtpTime {180, 0}
 @managerKeyList unsigned long 0
 @metatrafficMulticastIPAddressList [] IPAddress { }
 @metatrafficUnicastPort Port PORT_INVALID
 @usertrafficUnicastPort Port PORT_INVALID

Table 10 – Manager Submessage attributes (in addition to Table 2.5.1)
Attributes Type Default

 vargAppsSequenceNumberLast SequenceNumber SEQUENCE_NUMBER_UNKNOWN

Table 11 – Publication attributes
Attributes Type Default

 @topic PathName “DefaultTopic”
 @typeName TypeName ““
 @typeChecksum TypeChecksum 0
 strength long 1
 persistence NtpTime {0, 0}
 @expectsAck boolean true
 sendQueueSize unsigned long 1
 @reliabilityOffered unsigned long 0

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 124 – PAS 62030 © IEC:2004 (E)

2.5.2 Wire Format of the ParameterSequence

A ParameterSequence is a sequence of Parameters, terminated with a sentinel. Each
Parameter starts aligned on a 4-byte boundary with respect to the start of the
ParameterSequence. The representation of each parameter starts with a ParameterId
(identifying the parameter), followed by a ParameterLength (the number of octets from the
first octet of the value to the ID of the next parameter), followed by the value of the
parameter itself.

When an attribute is a list (indicated by the "[]" after the type-name in the object model), the
elements of the array are represented in the parameter sequence by listing the individual
elements with the same (repeated) parameter ID.

ParameterSequence
....2...........8...............16.............24...............32
+-+
| ParameterId id_1 | ParameterLength length_1 |
+---------------+---------------+---------------+---------------+
| |
~ value_1 ~
| |
+---------------+---------------+---------------+---------------+
| ParameterId id_2 | ParameterLength length_2 |
+---------------+---------------+---------------+---------------+
| |
~ value_2 ~
| |
~ ~
| |
+---------------+---------------+---------------+---------------+
| PID_SENTINEL | ignored |
+---------------+---------------+---------------+---------------+

ParameterId and ParameterLength are unsigned shorts:
typedef unsigned short ParameterId;
typedef unsigned short ParameterLength;

The parameter length is the number of octets following the length of the parameter to reach
the ID of the next parameter (or the ID of the sentinel). Because every ParameterId starts on
a 4-byte boundary, the ParameterLength is always a multiple of four.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 125 –

2.5.3 ParameterID Definitions

Future minor versions of the protocol can add new parameters up to a maximum parameter
ID of 0x7fff. The range 0x8000 to 0xffff is reserved for vendor-specific options and will not
be used by any future versions of the protocol.

Table 12 – ParameterID Values
ID Name Used For Fields

 0x0000 PID_PAD -
 0x0001 PID_SENTINEL -
 0x0002 PID_EXPIRATION_TIME Application::expirationTime : NtpTime
 0x0003 PID_PERSISTENCE Publication::persistence : NtpTime
 0x0004

PID_MINIMUM_SEPARATION
 Subscription::minimumSeparation : NtpTime

 0x0005 PID_TOPIC Publication::topic : PathName,
 Subscription::topic : PathName

 0x0006 PID_STRENGTH Publication::strength : long
 0x0007 PID_TYPE_NAME Publication::typeName : TypeName,

 Subscription::typeName : TypeName
 0x0008 PID_TYPE_CHECKSUM Publication::typeChecksum : TypeChecksum,

 Subscription::typeChecksum : TypeChecksum
 0x0009 RTPS_PID_TYPE2_NAME
 0x000a

RTPS_PID_TYPE2_CHECKSUM

 0x000b PID_METATRAFFIC_
MULTICAST_IPADDRESS

 Application::metatrafficMulticastIPAddressList:
IPAddress[]

 0x000c PID_APP_IPADDRESS Application::unicastIPAddressList : IPAddress[]
 0x000d PID_METATRAFFIC_

UNICAST_PORT
 Application::metatrafficUnicastPort : Port

 0x000e PID_USERDATA_
UNICAST_PORT

 Application::userdataUnicastPort :Port

 0x0010 PID_EXPECTS_ACK Publication::expectsAck : boolean
 0x0011 PID_USERDATA_

MULTICAST_IPADDRESS
 Reader::userdataMulticastIPAddressList : IPAddress[]

 0x0012 PID_MANAGER_KEY Application::managerKeyList : unsigned long []
 0x0013 PID_SEND_QUEUE_SIZE Publication::sendQueueSize : unsigned long
 0x0015 PID_PROTOCOL_VERSION Application::protocolVersion : ProtocolVersion
 0x0016 PID_VENDOR_ID Application::vendorId : VendorId
 0x0017 PID_VARGAPPS_SEQUENCE_

NUMBER_LAST
 Manager::vargAppsSequenceNumberLast :
SequenceNumber

 0x0018 PID_RECV_QUEUE_SIZE Subscription::recvQueueSize : unsigned long
 0x0019 PID_RELIABILITY_ OFFERED Publication::reliabilityOffered : unsigned long
 0x001a PID_RELIABILITY_

REQUESTED
 Subscription::reliabilityRequested : unsigned long

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 126 – PAS 62030 © IEC:2004 (E)

2.5.4 Reserved Objects

2.5.4.1 Description

To ensure the automatic discovery of Applications and Services in a Network, every
Manager and every ManagedApplication contains a number of special built-in
NetworkObjects, which have reserved objectId’s.

These special objects fall into these categories:

─ The Application itself is a NetworkObject with a special GUID (the instance of
the Application is called applicationSelf). In addition, every Application has a
CSTWriter (writerApplicationSelf) that disseminates the attributes of the local
Application on the Network.

─ Several objects are dedicated to the discovery of Managers and
ManagedApplications on the Network. Every ManagedApplication has the
CSTReaders readerApplications and readerManagers, through which the existence
and attributes of the remote ManagedApplications and remote Managers,
respectively, are obtained. Every Manager has the corresponding CSTWriters
writeApplications and writeManagers.

─ As seen in Figure 33, every ManagedApplication has, among others, two instances
of a CSTReader (readerPublications and readerSubscriptions) and two instances of a
CSTWriter (writerPublications and writerSubscriptions). Through the CSTReaders,
the ManagedApplication can receive information about the existence and
attributes of all the remote Publications and Subscriptions in the Network.
Through the CSTWriters, the ManagedApplication can send out information
about its local Publications and Subscriptions.

Future versions of the protocol may add additional special objects and expand the list of
reserved objectId’s within the same major version number.

Subclause 2.8 describes in detail what Messages are exchanged between these special
objects.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 127 –

2.5.4.2 Overview: Special Objects in a ManagedApplication

Every ManagedApplication contains the following special objects seen in Figure 33.

Figure 33 – Special objects of a Managed Application

applicationSelf :ManagedApplication The attributes of the ManagedApplication itself.

writerApplicationSelf :CSTWriter A Writer that makes the attributes of the application itself
available.

readerApplications :CSTReader The Reader through which the application receives the
attributes of other Applications on the Network.

readerManagers :CSTReader The Reader through which the application receives the
attributes of Managers on the Network.

readerPublications :CSTReader The Reader through which the application receives
information about remote Publications that exist on the Network.

writerPublications :CSTWriter The Writer that makes the attributes of the local Publications
(contained in the local application) available on the Network.

readerSubscriptions:CSTReader The Reader through which the application receives
information about remote Subscriptions that exist on the Network.

writerSubscriptions :CSTWriter The Writer that makes the attributes of the local
Subscriptions (contained in the local application) available on the Network.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 128 – PAS 62030 © IEC:2004 (E)

Figure 34– Special objects of a Manager

2.5.4.3 Overview: Special Objects in a Manager
Every Manager contains the following special objects seen in Figure 34.

managerSelf :Manager The attributes of the Manager itself.

writerApplicationSelf :CSTWriter A Writer that makes the attributes of the application itself
available.

readerManagers :CSTReader The Reader through which the Manager discovers the other
Managers on the Network.

writerManagers :CSTWriter The Writer through which a Manager provides information on all
the other Managers in the Network to its managees.

writerApplications :CSTWriter The Writer through which a Manager provides information on
all its managees.

2.5.4.4 Reserved ObjectIds

Table 13 lists the current reserved objectIds. All these objects are also meta-objects; so the M-
bit and R-bit are set in the objectId. The meaning of these objects cannot change in this major
version (1) of the protocol but future minor versions may add additional reserved objectId’s.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 129 –

Table 13 – Predefined InstanceIds
Predefined instanceId objectId of this Built-in Object Description
 applicationSelf (OID_APP) = {00,00,01,c1} The Application (ManagedApplica

tion or Manager) itself.
 writerApplicationSelf (OID_WRITE_APPSELF) =

{00,00,08,c2}
 The CSTWriter which makes the
attributes of the local Application
available on the Network. Every
Application has one of these.

 writerApplications (OID_WRITE_APP) = {00,00,01,c2} Every Manager has this CSTWriter,
to make the attributes of the Man
agedApplications that are its manag
ees available on the Network.

 readerApplications (OID_READ_APP) = {00,00,01,c7} Every Manager has such a
CSTReader, through which it reads
the managees from Managers.

 writerManagers (OID_WRITE_MGR) = {00,00,07,c2} Every Manager has this CSTWriter
containing the other Managers.

 readerManagers (OID_READ_MGR) = {00,00,07,c7} CSTReader through which an Appli
cation obtains information about the
attributes of the Managers on the
Network.

 writerPublications (OID_WRITE_PUBL) = {00,00,03,c2} Every ManagedApplication makes
its local Publications available
through this CSTWriter.

 readerPublications (OID_READ_PUBL) = {00,00,03,c7} This CSTReader reads the attributes
of remote Publications. It is present
in every ManagedApplication.

 writerSubscriptions (OID_WRITE_SUBS) = {00,00,04,c2} Every ManagedApplication makes
its local Subscriptions available
through this CSTWriter.

 readerSubscriptions (OID_READ_SUBS) = {00,00,04,c7} This CSTReader reads the attributes
of remote Subscriptions. It is present
in every ManagedApplication.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 130 – PAS 62030 © IEC:2004 (E)

2.5.5 Examples

2.5.5.1 Examples of GUIDs

Table 14 shows some examples of GUIDs and their interpretations.

2.5.5.2 Examples of ParameterSequences

Suppose an application receives a VAR submessage for an object with GUID
<{11,22,33,44},{55,66,77,02},{00,00,01,c1}>. This GUID indicates this is a Manager (the kind
of the appId is 0x02).

Suppose the parameter list in the VAR submessage contains a parameter sequence with the
contents listed in Table 15.

Table 14 – Interpretation of Sample GUIDs
<hostId, appId, objectId> Interpretation

 {aa,bb,cc,dd} {11,22,33,01} {00,00,07,03} A user-level object of class Publication.
 {11,22,33,02} {00,00,07,c2} A meta-CSTWriter that resides on a Manager; the

object has a special instanceId: it is the CSTWriter of
all Man agers for which the Manager keeps
information.

 {11,22,33,01} {00,00,17,c2} This is a special instanceId; the object is a meta-
level CSTWriter, however, version 1.0 does not
define this special instanceId (a higher-level minor-
version might define it). An implementation of
version 1.0 should classify this GUID as
UNKNOWN.

 {11,22,33,01} {ee,ee,ee,02} A user-level CSTWriter in an Application.
 {11,22,33,01} {dd,dd,dd,82} A meta-level CSTWriter in an Application.
 {11,22,33,01} {00,00,01,c1} A special meta-object of kind Application: the

special instanceId "000001c1" is defined to refer to
the applica tion itself, <{aa,bb,cc,dd},{11,22,33,01}>.

 {11,22,33,02} {00,00,01,c1} The same objectId as the previous example; the
only difference is that the receiver knows from the
appId that it is dealing with a special application, a
Manager.

 {11,22,33,17} {00,00,01,c1} Should be classified as UNKNOWN, because the
kind of application ("17") is unknown.

 {11,22,33,01} {00,00,01,40} Should be classified as UNKNOWN because the
kind of objectId is unknown.

 {00,00,00,00} {11,22,33,01} {00,00,01,c1} Should be classified as UNKNOWN because the
hostId is unknown.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 131 –

This means that the application knows that the remote Manager object with GUID
<{11,22,33,44},{55,66,77,02},{00,00,01,c1}> has the attributes listed in Table 16.

Note that the application uses default values for those attributes for which it has not
explicitly received information.

The receiving application ignores the last three parameters in the parameter sequence of
Table 15:

─ The parameter PID_TOPIC is a known parameter; but in version 1.0 of the
protocol, it does not change a known attribute of a Manager; this parameter
should be ignored. This is not an error.

─ The parameter with ID 0x00a0 is an unknown parameter that might have been
added in a higher minor version of the protocol; this parameter should be ignored.
This is not an error.

─ The parameter with ID 0x9001 is a vendor-specific parameter: if the application
does not know about this vendor-specific extension, this parameter should be
ignored. This is not an error.

Table 15 – Example VAR Submessage
Parameter ID Value

 PID_EXPIRATION_TIME {10,0}
 PID_APP_IPADDRESS 206.197.67.102
 PID_APP_IPADDRESS 206.167.12.12
 PID_METATRAFFIC_UNICAST_PORT 1051
 PID_USERDATA_UNICAST_PORT 1052
 PID_TOPIC "abc"
 0x00a0 123456
 0x9001 abcdef

Table 16 – Example Manager Attributes
Attribute Contents

 expirationTime {10,0}
 managerKey 0
 metatrafficMulticastIPAddressList {}
 metatrafficUnicastPort 1051
 usertrafficUnicastPort 1052
 protocolVersion PROTOCOL_VERSION_1_0
 unicastIPAddressList { 206.197.67.102, 206.167.12.12}
 vendorId VENDORID_UNKNOWN
 vargAppsSequenceNumberLast SEQUENCE_NUMBER_UNKNOWN

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 132 – PAS 62030 © IEC:2004 (E)

2.6 Publish-Subscribe Protocol
This subclause describes the Publish-Subscribe Protocol, which sends issues containing
UserData from Publications to Subscriptions. The section separately describes the protocols
for the case of best-effort publish-subscribe and reliable publish-subscribe and shows the
representation of UserData and the related type-checking.

2.6.1 Publication and Subscription Objects

2.6.1.1 Object Model

The following figure shows the relevant aspects of the RTPS object model. This subclause
only describes the simple case of best-effort Subscriptions (the Subscription attribute
reliabilityRequested is 0).

2.6.1.1.1 Topic And Type Properties

Every Publication and Subscription has the following three properties:

topic The name of the information in the Network that is published or subscribed to.

typeName The name of the type of this data.

typeChecksum A checksum that identifies the CDR-representation of the data.

The types and meaning of these attributes is described in detail in Section 2.6.2 .

A Publication and Subscription "match" when the following conditions are satisfied:

─ They have the same value for the attribute topic.

─ They have the same value for the attribute typeName or this string is the empty
string for one of the two objects.

─ They have the same value for the attribute typeChecksum or this number is 0 for
one of the two objects.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 133 –

2.6.1.1.2 Subscription Properties: minimumSeparation

The minimumSeparation is the minimum time between two consecutive issues received by the
Subscription. It defines the maximum rate at which the Subscription is prepared to receive
issues. Publications sending to this Subscription should try to send issues so that they are
spaced at least this far apart.

2.6.1.1.3 Publication Properties: strength, persistence

The strength is the precedence of the issue sent by the Publication; the persistence indicates
how long the issue is valid. Strength and persistence allow the receiver to arbitrate if issues
are received from several matching publications.

2.6.1.1.4 Reliability

Publications can offer multiple reliability policies ranging from best-efforts to strict
(blocking) reliability. Subscriptions can request multiple policies of desired reliability and
specify the relative precedence of each policy. Publications will automatically select among
the highest precedence requested policy that is offered by the publication.

The reliability policies offered by the publication are part of the publication declaration and
are listed with using the parameter PID_PUBL_RELIABILITY_OFFERED. The reliability
policies requested by the subscription are part of the subscription declaration and are listed
with using the parameter PID_SUBS_RELIABILITY_REQUESTED.

The relative order of each PID_SUBS_RELIABILITY_REQUESTED in the subscription
declaration indicates relative precedence. The policies are ordered in decreasing order of
precedence, that is, starting with the highest precedence requested policy.

Version 1.0 of the RTPS protocol defines two reliability policies: best-efforts and strict.
Value Name

0
PID_VALUE_RELIABILITY_BEST_EFFORTS

1 PID_VALUE_RELIABILITY_STRICT

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 134 – PAS 62030 © IEC:2004 (E)

2.6.1.1.5 Deployment

The following figure shows a possible deployed system of Publications and Subscriptions:
for the following description, only matching objects matter. In RTPS, there can be multiple
matching Publications and Subscriptions on the Network.

2.6.1.2 Publication Behavior Towards Best-Effort Subscriptions

The Publication is given user data by the application (represented by the method
NewIssue(), which gives the UserData to the Publication). The Publication maintains a
queue called the sendQueue with space for sendQueueSize issues. Every time a new issue is

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 135 –

given to the Publication, it places it in the sendQueue and increases the
lastModificationSeqNumber.

The Publication sends this UserData to all the matching Subscriptions on the Network using
the ISSUE submessage.

2.6.1.2.1 Contents of the Publication Message

A Publication puts the information from Table 2.6.1 in the ISSUE submessage.

2.6.1.2.2 When to Send an Issue

The publication needs to try to minimize latency while also trying to respect the
minimumSeparation of the subscriptions.

2.6.1.2.3 Best-Effort Subscriptions

A best-effort subscription is a completely passive element that receives Messages containing
ISSUEs from matching publications; it does not send messages itself.

2.6.1.3 Publication Behavior Towards Strict-Reliable Subscriptions

The Publication is given user data by the application (represented by the method
NewIssue(), which gives the UserData to the Publication).

The Publication maintains a queue called the sendQueue with space for sendQueueSize
issues. Every time a new issue is given to the Publication, it attempts to place it in the
sendQueue. The attempt will succeed if either the queue has space available, or else there
are some issues that can be removed from the queue. Otherwise the attempt will fail.

If the attempt succeeds, the lastModificationSeqNumber is increased, and the issue is
associated with that sequence number.

If the attempt fails the Publication will block until it is possible to remove at least one issue
from the queue.

The Publication keeps track of all the matching strict-reliable Subscriptions on the Network.
The Publication keeps track of the issues (identified by the associated sequenceNumber)
that have been acknowledged by each strict-reliable Subscription.

Issues can only be removed from the sendQueue if they have been acknowledged by all
Active strict-reliable Subscriptions on the Network.

A strict-reliable Subscription is Active if and only if the Publication receives timely ACK
messages from it in response to the HEARTBEAT messages it sends. The actual timing of

Table 17 – ISSUE generated by an RTPSPublication Publication
Field in ISSUE

Submessage
Contents

 subscriptionGUID < HOSTID_UNKNOWN, APPID_UNKNOWN, OBJECTID_UNKNOWN>
 (the issues sent by a best-effort publication will be usable by all interested
subscriptions)

 publicationGUID < pub->hostId, pub->appId, pub->objectId >
 issueSeqNumber pub->lastModificationSequenceNumber
 (parameters) NONE
 (timestamp) optional timestamp of the issue
 issueData user data

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 136 – PAS 62030 © IEC:2004 (E)

HEARBEAT messages sent and the elapsed time required to declare a Subscription non-
Active is middleware dependent. It is expected that the implementation will allow the
application developer to tune the behavior to the specific timing and reliability requirements
of the application.

The Publication sends this UserData to all the matching Subscriptions on the Network using
the ISSUE submessage.

The Publication sends HEARTBEAT messages to all matching strict-reliable Subscriptions
on the Network.

HEARTBEAT messages sent to strict-reliable Subscriptions that have not acknowledged all
issues in the sendQueue must have the FINAL-bit unset.

HEARTBEAT messages sent to strict-reliable Subscriptions that have acknowledged all
issues in the sendQueue can have the FINAL-bit set or unset. The decision is middleware
specific.

2.6.1.3.1 When to Send an Issue

The publication needs to try to minimize latency while also trying to respect the
minimumSeparation of the subscriptions.

2.6.1.3.2 When to Send a HEARTBEAT

The timing of HEARTBEAT messages is middleware dependent. However, the publication
must continue sending HEARTBEAT messages to all Active strict-reliable subscriptions that
have not acknowledged all issues up to and including the one with sequence number
lastModificationSeqNumber.

2.6.1.3.3 Strict-Reliable Subscriptions

Strict-reliable Subscriptions receives Messages containing ISSUEs and HEARTBEATs from
matching publications and send back ACK Messages in response.

2.6.1.3.4 When to Send an ACK

Strict-reliable Subscriptions should only send ACK Messages in response to HEARTBEATs.

If the HEARTBEAT does not have the FINAL-bit set, then the subscription must send an
ACK Message back.

If the HEARTBEAT does has the FINAL-bit set, then the subscription should only send an
ACK Message back if it has not received all issues up to HEARTBEAT’s lastSeqNumber.

The strict-reliable Subscriptions can choose to send the ACK Messages back immediately in
response to the HEARTBEATs or else it can schedule the response for a certain time in the
future. It can also coalesce related responses so there need not be a one-to-one
correspondence between a HEARTBEAT and an ACK response. These decisions and the
timing specifics are middleware dependent.

2.6.1.3.5 Contents of the ACK Message

A Subscription puts the information from Table 18 in the ACK submessage. In this table
HEARTBEAT stands for the heartbeat message that triggered the ACK as a response.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 137 –

2.6.1.3.6 Contents of the HEARTBEAT Message

A Publication puts the information from Table 19 in the HEARTBEAT submessage sent to
strict-reliable subscriptions.

2.6.2 Representation of User Data

UserData is sent in the ISSUE submessage from a Publication to one or more Subscriptions.

The topic of that data is an attribute of the Publication and Subscription. The type of this
topic attribute is PathName.

To ensure type-consistency between the Publication and Subscription, both have additional
attributes typeName (of type TypeName) and typeChecksum (of type TypeChecksum).

The following sections describe the encapsulation of user data in CDR format in the ISSUE,
and the meaning of the TypeName and TypeChecksum structures and the PathName

Table18 – ACK Sent By a Subscription in Response to a HEARTBEAT
Sent By a Matching Publication

Field in ISSUE
Submessage

Contents

 readerGUID < sub->hostId, sub->appId, sub->objectId >
 writerGUID < pub->hostId, pub->appId, pub->objectId >
 Bitmap The specifics of the bitmap are middleware-dependent. However, it must meet

the following constraints:
 1. Bitmap.bitmapBase>= HEARTBEAT.firstSeqNum.
 2. The Subscriber has received all issues up-to and including Bitmap.bitmapBase-
1
 3. Bits are only set to “0” if the Subscription is missing the corresponding
sequence numbers.

Table 19 – HEARTBEAT Sent By a Publication to a Matching Strict-Reliable
Subscription

Field in ISSUE
Submessage

Contents

 readerGUID This can take several forms to indicate whether the message is directed to a
specific subscription or to all subscriptions. The distinction is based on whether
the objectId portion is OBJECTID_UNKNOWN.
 If the objectId=OBJECTID_UNKNOWN then the reader GUID is:
 < HOSTID_UNKNOWN, APPID_UNKNOWN, OBJECTID_UNKNOWN>
 This indicates the heartbeat applies to all subscriptions.
 If the objectId!=OBJECTID_UNKNOWN then the readerGUID is:
 < sub->hostId, sub->appId, sub->objectId >
 This indicates that the heartbeat applies to one specific subscription.

 writerGUID < pub->hostId, pub->appId, pub->objectId >
 firstSeqNumber The first sequence number available to the Subscription. This sequence number

must be greater or equal to (lastSeqNumber-sendQueueSize). It may not be
exactly this because either not enough issues have been published to fill the
sendQueue, or else some middleware-specific option causes certain issues to
expire their validity.

 lastSeqNumber pub->lastModificationSequenceNumber

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 138 – PAS 62030 © IEC:2004 (E)

structure that is used in the topic.

2.6.2.1 Format of Data in UserData
User data is represented on the wire in CDR format, as specified in Annex A: CDR for RTPS.
The endianness used in the representation of the user data is defined by the endianness of
the submessage: the E-bit present in every submessage (see 2.3.2.2). For purposes of
alignment when encoding/decoding user data elements that need 8-byte alignment, the CDR
stream will be reset at the start of the UserData block.

The RTPS protocol assumes that the sender and receiver of UserData know the format of the
type, so that they can serialize and deserialize the data in the correct CDR format. RTPS does
not define how the sender and receiver get this type information but does define optional
mechanisms to check whether the types are consistent.

2.6.2.2 TypeName

TypeName is a string composed of up to TYPENAME_LEN_MAX characters.
#define TYPENAME_LEN_MAX 63
typedef string<TYPENAME_LEN_MAX> TypeName;

The RTPS protocol does not define the relationship between this type-name and the CDR
type of the issues. The contents of the type-name can be used freely by the application level.
The RTPS mechanism only checks that the typeName of Publication and Subscription are
equal. The middleware should not allow communication if the strings are not equal in length
and contents.

The default TypeName is the empty string (""). The empty string means that the type-name
is unknown and that type-checking should not be done.

2.6.2.3 TypeChecksum

The typeChecksum is used to verify that the format of the user data is consistent. It is a
4-byte unsigned number:

typedef unsigned long TypeChecksum;

In contrast to the TypeName, the RTPS protocol defines the relationship between the CDR
type of the data and the number in the checksum. The default checksum is the number 0,
which means that the checksum has not been generated and cannot be used to check type-
safety. If both the sender and receiver declare the checksum to be something other than 0,
the RTPS mechanism should only allow communication if the numbers are equal. Future
versions will expand on how this field is generated.

2.6.2.4 PathName

The PathName is a string with a maximum length of 255 characters:
#define PATHNAME_LEN_MAX 255
typedef string<PATH_LEN_MAX> PathName;

This is the type of the field topic in a Publication and Subscription.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 139 –

2.7 CST Protocol
The Composite State Transfer (CST) protocol transfers Composite State from CSTWriters to
CSTReaders.

2.7.1 Object Model
Figure 35 shows the relevant aspects of the RTPS object model.

Figure 35 – CST Protocol Object Model

The classes CSTWriter and CSTReader and their base-classes are part of the RTPS object
model described in earlier sections. To facilitate the description of the CST protocol, two
classes are added: CSTRemoteReader and CSTRemoteWriter.

A CSTWriter locally instantiates a CSTRemoteReader for each remote CSTReader that it
transfers information to. Because the CST protocol allows one CSTWriter to transfer data
concurrently to many CSTReaders, the CSTWriter can have several local
CSTRemoteReaders.

The complementary class on the reader’s side is the CSTRemoteWriter. A CSTReader has a
local CSTRemoteWriter for each remote CSTWriter it receives data from.

The CSTRemoteWriter and CSTRemoteReader are not NetworkObjects; they do not have a
GUID and are therefore not remotely accessible.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 140 – PAS 62030 © IEC:2004 (E)

2.7.2 Structure of the Composite State (CS)

The goal of the CST protocol is to transfer Composite State (CS) from CSTWriters to the
interested CSTReaders. This CS is composed of the attributes of a set of NetworkObjects.

The initial CS is an empty set. This CS can change dynamically through the following three
kinds of CSChanges:

─ A new NetworkObject (with a new unique GUID) is added to the CS of the
CSTWriter.

─ A NetworkObject is removed from the CS of the CSTWriter.

─ One or more attributes of a NetworkObject within the CS change.

The goal of the CST protocol is to allow the CSTReaders to reconstruct the CS in the
CSTWriter: the full set of NetworkObjects in the CS and their attributes. The CST protocol
is aimed at transferring the current CS and avoids transferring the entire history of
CSChanges that led to the current CS.

2.7.3 CSTWriter

2.7.3.1 Overview

The following subclauses describe the behavior of the CSTWriter, the CSTChangeForReader
and the CSTRemoteReader.

2.7.3.2 CSTWriter Behavior

The current CS of the CSTWriter is represented by a sequence of CSChanges. The
CSChanges are sequentially ordered by their SequenceNumber.

Every change in the CS of the CSTWriter creates a new CSChange with a new
SequenceNumber. The objectGUID of the new CSChange is the GUID of the NetworkObject
that the change in the CS applies to. The attributes of that NetworkObject are represented as
a ParameterSequence in the CSChange. The alive boolean is set to FALSE iff the CSChange
represents the removal of the NetworkObject from the set of objects in the CS.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 141 –

2.7.3.3 CSChangeForReader Behavior

The CSTChangeForReader keeps track of the communication state (attribute cS) and
relevance (attribute relevant) of each CSChange with respect to a specific remote CSTReader.

This relevant boolean is set to TRUE when the CSChangeForReader is created; it can be set to
FALSE when the CSChange has become irrelevant for the remote Reader because of later
CSChanges. This can happen, for example, when an attribute of a NetworkObject changes
several times: in that case a later CSChange can make a previous CSChange irrelevant
because a Reader is only interested in the latest attributes of the NetworkObject. It is the
responsibility of the CSTRemoteReader to use this argument correctly so that the
CSTReader can reconstruct the correct CS from the relevant CSChanges it receives.

Figure 36 shows the Finite State Machine representing the state of the attribute cS of the
CSChangeForReader.

Figure 36 – State of Attribute cS for CSChangeForReader

The states have the following meanings:

<New> a CSChange with SequenceNumber sn is available in the CSTWriter but this has not
been announced or sent to the CSTReader yet.

<Announced> the existence of this SequenceNumber has been announced.

<ToSend> it is time to send either a VAR or GAP with this sn to the CSTReader.

<Underway> the CSChange has been sent but the Writer will ignore new requests for this
CSChange.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 142 – PAS 62030 © IEC:2004 (E)

<Unacknowledged> the CSChange should have been received by the CSTReader, but this
has not been acknowledged by the CSTReader. As the message could have been lost,
the CSTReader can request the CSChange to be sent again.

<Acknowledged> the CSTWriter knows that the CSTReader has received the CSChange
with SequenceNumber sn.

The following describes the main events in this Finite State Machine. Tthis FSM just keeps
track of the state of the CSChangeForReader; it does not imply any specific actions:

SENT_HB(sn) : The CSTWriter has sent a HEARTBEAT with firstSeqNumber <= sn <=
lastSeqNumber; which means that the CSChange has been announced to the
CSTReader.

RECV_NACK(sn) : The CSTWriter has received an ACK where sn is inside the bitmap of the
ACK and has a bitvalue of 0.

SENT_VAR(sn) : The CSTWriter has sent a VAR for sn. The CSTReader will use the received
VAR to adjust its local copy of the CS.

SENT_GAP(sn) : The CSTWriter has sent a GAP where sn is in the GAP’s gapList, which
means that the sn is irrelevant to the CSTReader.

RECV_ACK(sn) : The CSTWriter has received an ACK with bitmap.bitmapBase > sn. This
means the CSChange with SequenceNumber sn has been received by the CSTReader.

PUSH(sn) : A CSTWriter can push out CSChanges that have not been requested explicitly by
the reader, by moving them directly from the state <New> to the state <ToSend>.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 143 –

2.7.3.4 CSTRemoteReader Behavior

Each CSTRemoteReader has a communication state cS, which represents the current
behavior of the CSTWriter with respect to one remote CSTReader. The behavior of the
CSTReader is partly influenced by the attribute fullAcknowledge.

Figure 37 – CSTRemoteReader

The following is an overview of the most important abbreviations used in Figure 37 to
represent events:

RECV_ACKf : an ACK was received from the CSTReader with FINAL-bit==FALSE.

SENT_HB : a HB was sent to the CSTReader

^VAR : this is an action: send a VAR submessage

^HB : this is an action: send a HB submessage

^GAP : this is an action: send a GAP submessage

The overall behavior of the CSTRemoteReader is modelled by two concurrent FSMs.

The bottom FSM deals with sending data: GAPs or VARs. Whenever there are CSChanges in
state <ToSend>, the CSTRemoteReader is in state <MustSendData>. In this state, the
CSTWriter will send VARs for relevant CSChanges and will include the irrelevant
CSChanges in the gapList of a GAP. 2.7.5.2 and 2.7.5.3 show the contents of the VAR and
GAP.

e 7.3

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 144 – PAS 62030 © IEC:2004 (E)

The most efficient CSTWriter will send the VARs consecutively and in order (lowest
sequence-numbers first) to facilitate the reconstruction of the CS by the CSTReader, but this
is not a requirement. Likewise, the CSTReader will deal more efficiently with the CSTWriter
that sends a GAP before VAR if there is a gap in the sequence numbers of the VAR, since the
CSTReader then knows that sequence number is irrelevant. A possible sequence of
submessages might be: GAP(1->100) VAR(101) VAR(102) GAP(103,105) VAR(104) VAR(106).

The top FSM shows the heartbeating behavior of a CSTWriter. In case an ACK without
FINAL-bit is received, the CSTWriter must send a heartbeat within the delayResponseTime.
In addition, a CSTWriter must regularly announce itself by sending a heartbeat. In case the
CST protocol is in “fullAcknowledge” mode, the heartbeating only is necessary when there
are unacknowledged CSChanges.

2.7.3.5 Timing Parameters on the CSTWriter side

The behavior is determined by the following timing parameters:

CSTWriter::waitWhileDataUnderwayTime: The CSTWriter is allowed to ignore NACKs for
data that it considers to be underway to the CSTReader. The size of this window is the
“waitWhileDataUnderwayTime”. The window could be the CSTWriter’s estimate of the time
it takes a message (a VAR or GAP) to be sent by the CSTWriter to the CSTReader, plus the
time it takes for the CSTReader to process the message and immediately send a response (an
ACK) to the CSTWriter, plus the time it takes the CSTWriter to receive and process this
ACK. A larger waitWhileDataUnderwayTime will cause the CST protocol to slow down and be
less aggressive; a lower time might cause data to be sent unnecessarily.
waitWhileDataUnderwayTime can be 0 seconds.

CSTWriter::repeatAnnouncePeriod: This is the period with which the CSTWriter will
announce its existence and/or the availability of new CSChanges to the CSTReader. This
period determines how quickly the protocol recovers when an announcement of data is lost.
CSTWriter::repeatAnnouncePeriod cannot be 0 nor INFINITY for the protocol to function
correctly.

CSTWriter::responseDelayTime: This is the time the CSTWriter waits before responding to
an incoming message. Higher values allow the CSTWriter to combine more information in
one Message or to service many concurrent CSTReaders more efficiently.
CSTWriter::delayResponseTime can be 0 seconds.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 145 –

2.7.4 CSTReader

2.7.4.1 Overview

The following subclauses describe the behavior of the CSTWriter, the CSTChangeForReader
and the CSTRemoteReader. The CSTReader receives CSChangeFromWriters from the
CSTWriter. In case a VAR was received for the CSChangeFromWriters, the CSTReader will
store the contents of the VAR in an associated CSChange. The CSTReader should be able to
reconstruct the current CS of a specific CSTWriter by interpreting all consecutive
CSChanges.

In the current version of the protocol, the CSTReader should reconstruct the CS for each
CSTRemoteWriter. Future versions of the protocol will specify the correct interpretation in
the case that several CSTRemoteWriters provide information on the same NetworkObject.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 146 – PAS 62030 © IEC:2004 (E)

2.7.4.2 CSTReader Behavior

As in the case of the CSTWriter, the CSTReader maintains a state
CSTRemoteWriterCommState cS per CSTRemoteWriter, as well as a state
CSChangeFromWriterCommState cS for most CSChanges (since there may be a
CSChangeFromWriter that has no corresponding CSChange, for example, a GAP message).

2.7.4.3 CSChangeFromWriter Behavior

Here is the meaning of the abbreviated events in this FSM:

RECV_HB(sn) : the CSTReader received a HEARTBEAT with firstSeqNumber <= sn <=
lastSeqNumber

SENT_NACK(sn) : the CSTReader sent an ACK with sn inside the bitmap-range and with
bit-value 0

RECV_GAP(sn) : the CSTReader received a GAP with sn in the gapList

RECV_VAR(sn) : the CSTReader received a VAR for sequenceNumber sn

The four states have the following meaning:

<Future> : A CSChange with SequenceNumber sn may not be used yet by the CSTWriter.

<Missing>: The sn is available in the CSTWriter and is needed to reconstruct the CS.

<Requested>: The sn was requested from the CSTWriter, a response might be pending or
underway

<Received> : The sn was received: as a VAR if the sn is relevant to reconstruct the CS or as a
GAP if the sn is irrelevant.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 147 –

2.7.4.4 CSTRemoteWriter Behavior
The abbreviations used for events are as follows:

RECV_HBf : received a HEARTBEAT from the CSTWriter with FINAL-bit==FALSE

The abbreviations used for the actions are as follows:

^ACK : send an ACK to the CSTWriter

In these ACKs, the ACK.bitmap.bitmapBase always is the lowest sequenceNumber whose
corresponding CSChangeFromReader is not in state <Received>. This can be 0
(SEQUENCE_NUMBER_NONE). The CSTReader can choose the length of the bitmap as this
will determine how much CSChanges move to <ToSend> state on the CSTWriter side and
how much information the CTSReader will receive from the CSTWriter. The bitmap can only
contain “0”’s when the corresponding CSChangeFromReaders are in state <Missing> (or
<Future>). See Section Error! Reference source not found. for a description of the further
fields in these ACKs.

The CSTRemoteWriter must send an ACK in two cases:

1. First, when a HEARTBEAT with the FINAL-bit==FALSE (“RECV_HBf”) is received, the
CSTReader must respond with an ACK that has the FINAL-bit==TRUE. The CSTReader can
delay its response.

2. Second, when the CSTReader has evidence of Missing data, it needs to request the data by
sending the appropriate ACK.

2.7.4.5 Timing Parameters on the CSTReader side

The timing parameters of the CSTReader are:

CSTReader::responseDelayTime: how long the CSTReader waits before sending a response
to a HEARTBEAT to the CSTWriter.

2.7.5 Overview of Messages used by CST

This subclause gives an overview of the contents of the Messages that a CSTReader and
CSTWriter exchange and the contents of the various fields of the Messages.

The submessages may need to be preceded by other messages that modify the context (see
subclause 2.3.3).

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

 – 148 – PAS 62030 © IEC:2004 (E)

The only logical SubMessage that a CSTReader reader sends to a CSTWriter writer are
ACKs. As shown in the table above, in this version of the protocol, the replyIPAddressPortList
must be set explicitly to all the destinations of the reader.

2.7.5.1 HEARTBEATs—Sent from a CSTWriter to a CSTReader

The HEARTBEATs sent by the CSTWriter writer to the CSTReader reader always have the
contents listed in this table.

Field Value in the CST protocol
 FINAL-bit see description of the behavior of the CSTRemoteReader
 readerGUID reader.GUID
 writerGUID writer.GUID
 ACKIPAddressPortList optional destinations of the writer
 firstSeqNumber writer.firstSeqNumber
 lastSeqNumber writer.lastSeqNumber

2.7.5.2 GAPs—Sent from a CSTWriter to a CSTReader

The contents of the GAPs sent by the CSTWriter writer to the CSTReader reader is shown in
the table. The contents of the gapList is described in the detailed description of the behavior
of the CSTRemoteReader.

Field Value in the CST protocol
 readerGUID reader.GUID
 writerGUID writer.GUID
 ACKIPAddressPortList optional; additional destinations of the writer
 gapList see description of the behavior of the CSTRemoteReader

Table 20 – ACKs—Sent from a CSTReader to a CSTWriter
Field Value in the CST protocol

 FINAL-bit see description of the behavior of the CSTRemoteWriter
 readerGUID reader.GUID
 writerGUID writer.GUID
 replyIPAddressPortList required: must explicitly contain all destinations of the reader

(reader.IPAddressPortList())
 bitmap see description of the behavior of the CSTRemoteWriter

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 149 –

2.7.5.3 VARs—Sent from a CSTWriter to a CSTReader

A VAR encodes the contents of a specific CSChange cSChange and is sent from the
CSTWriter writer to the CSTReader reader.

Field Value in the CST protocol
 readerGUID reader.GUID
 writerGUID writer.GUID
 objectGUID cSChange.GUID
 writerSeqNumber cSChange.sn
 (timestamp) optional timestamp
 (parameters) cSChange.attributes (iff cSChange.alive==TRUE)
 ALIVE-bit csChange.alive
 ACKIPAddressPortList optional; additional destinations of the writer

2.8 Discovery with the CST Protocol
RTPS defines mechanisms that allow every Application to automatically discover other
relevant Applications and their Services in the Network. These mechanisms use the CST
Protocol that is described in the previous section.

2.8.1 Overview

The Manager that manages a ManagedApplication is called the Application’s MOM (My
Own Manager). The other Managers in the Network are the Application’s OAMs (Other
Applications’ Manager).

Figure 38 provides an overview of the protocols used for the discovery:

─ The Inter-Manager Protocol allows Managers to discover each other in the
Network. This protocol is described in 2.8.3 .

─ The Manager-Discovery Protocol allows every ManagedApplication to discover
other Managers in the Network: the ManagedApplication receives this
information from its MOM. This protocol is described in 2.8.5 .

─ The Registration Protocol allows Managers to find their managees and obtain
their managees’ state. This protocol is described in 2.8.4 .

─ The Application-Discovery Protocol allows every ManagedApplication to
discover other ManagedApplications on the Network. This protocol is described
in 2.8.6 .

─ The Services-Discovery Protocol allows every ManagedApplication to find out
about the Services (the Publications and Subscriptions) in the other
ManagedApplications on the Network. This protocol is described in 2.8.7 .

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 150 – PAS 62030 © IEC:2004 (E)

Application1

Manager
(has Application 1 as managee)

Registration
Protocol

Application2

Manager for
Application2

Inter-Manager

Manager-Discovery Protocol
Application-Discovery Protocol
(MOM)

Application-Discovery
Protocol (OAM)

Protocol

Services

Figure 38 – Relation ship betwen Applications and managers

The discovery protocol uses reserved objects described in 2.5.4 .

2.8.2 Managers Keep Track of Their Managees

Every Manager keeps track of its managees and their attributes. To provide this information
on the Network, every Manager has a special CSTWriter writerApplications.

The Composite State that the CSTWriter writerApplications provides are the attributes of all
the ManagedApplications that the Manager manages (its managees).

2.8.3 Inter-Manager Protocol

Every Manager has a special CSTWriter writerApplicationSelf through which the Manager
makes its own state available on the Network. The CS of the writerApplicationSelf contains
the attributes of only one NetworkObject: the Manager itself.

The attribute vargAppsSequenceNumberLast of the Manager is equal to the
lastModificationSeqNumber of the CSTWriter writerApplications. Whenever the Manager
accepts a new ManagedApplication as its managee, whenever the Manager loses a
ManagedApplication as a managee or whenever an attribute of a managee changes, the CS
of the writerApplications changes and the Manager’s vargAppsSequenceNumberLast is updated.

Formally: for every Manager manager : manager.vargAppsSequenceNumberLast =
manager.writerApplications.lastModificationSeqNumber.

Every Manager has the special CSTReader readerManagers through which the Manager
obtains information on the state of all other Managers on the Network.

The communication between the Manager::writerApplicationSelf and
Manager::readerManagers uses the CST Protocol that was described in the previous
subclause, with a specific configuration.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 151 –

The Manager::writerApplicationSelf needs to be configured with the destinations (IP-
addresses) of the Manager::readerManagers on the Network. This configuration is necessary
to bootstrap the plug-and-play mechanism of RTPS. In case multicast is used, one single
multicast address is sufficient: this is the multicast-address the Managers will then use to
discover each other on the Network.

To support the automatic dynamic discovery and aging of Managers, the
Manager::writerApplicationSelf must announce its presence repeatedly: the value of the
repeatAnnouncePeriod timing- parameter of the Manager’s writerApplicationSelf must be
small relative to the expirationTime of the Manager.

Similarly, the readerManagers CSTReader will only consider the remote Manager alive
within the expirationTime of the Manager. If no Message is received from the Manager’s
writerApplicationSelf during the expirationTime, the remote Manager must be considered
dead; the CSTReader should behave as if it received a CSChange with the ALIVE-bit set to
FALSE.

Because the CST Protocol for the inter-management traffic relies on repetitive messages, the
fullAcknowledge attribute of the CSTReader and CSTWriter must be FALSE.

Here is a summary of the inter-manager protocol:

Initial Condition: New Managers know how to reach other potential managers on the
Network.

Protocol: CST Protocol between Manager::writerApplicationSelf and
Manager::readerManagers with repetition (repeatAnnouncePeriod of the
writerApplicationSelf must be sufficiently high) and no acknowledgements
(fullAcknowledge == FALSE).

Final Condition: Every Manager has the state of all other Managers on the Network.
Repeated keep-alive HEARTBEATING is needed.

2.8.4 The Registration Protocol

The registration protocol enables managees to discover their Managers in the Network.

Initial Condition: The ManagedApplication is configured with a way to contact the
readerApplications of its potential Managers (this configuration can be one single multicast
address that will be used for the discovery of managers by applications). In addition, the
ManagedApplication and Manager are configured with a managerKeyList which makes it
possible for Applications and Managers to decide which Managers will manage which
Applications.

Final Condition: Every Manager knows all its Managees and their attributes.

Protocol: CST Protocol (with sufficient repeatAnnouncePeriod and
fullAcknowledge==FALSE) between the ManagedApplication’s writerApplicationSelf and the
Manager’s readerApplications.

The ManagedApplication has a special CSTWriter writerApplicationSelf. The Composite State

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 152 – PAS 62030 © IEC:2004 (E)

of the ManagedApplication::writerApplicationSelf contains only one NetworkObject: the
application itself. As is the case for the writerApplicationSelf of the Manager, the
writerApplicationSelf of the ManagedApplication must be configured to announce its
presence repeatedly (the repeatAnnouncePeriod of that writer must be smaller than
expirationTime of the ManagedApplication) and does not request nor expect
acknowledgements (fullAcknowledge==FALSE).

A Manager that discovers a new ManagedApplication through its readerApplications must
decide whether it must manage this ManagedApplication (become its MOM) or not (stay an
OAM). For this purpose, the attribute managerKeyList of the Application is used: if one of the
ManagedApplication’s keys (in the attribute managerKeyList) is equal to one of the
Manager’s keys, the Manager accepts the Application as a managee and becomes its MOM.
If none of the keys are equal, the managed application is ignored: the Manager will not
manage this Application and stay an OAM for the Application. The managerKey 0x7F000001
(IP loopback) has a special meaning: the Manager will accept the ManagedApplication with
key 0x7F000001 as a managee when that ManagedApplication runs on the same host as the
Manager.

The application state in the Manager is only temporary. This approach is completely similar
to the repeatAnnouncePeriod mechanism of Managers described in 2.8.3 . The duration of
the lease is based on the value of the ManagedApplication’s expirationTime. The
repeatAnnouncePeriod of the writerApplicationSelf must be small enough so that the Manager
receives regular messages from the ManagedApplication. If the Manager has not received a
Message from the ManagedApplication during the expirationTime of that
ManagedApplication, it considers the ManagedApplication dead and behaves as if a
CSChange has been received declaring the Application dead.

2.8.5 The Manager-Discovery Protocol

With the Manager-Discovery protocol, a Manager will send the state of all Managers in the
Network to all its managees.

Initial Condition: Every Manager has obtained the state of other Managers (using the inter-
manager protocol) and knows its managees.

Protocol: CST Protocol between Manager::writerManagers and
ManagedApplication::readerManagers.

Final Condition: Every managee of every Manager has the state of all Managers on the
Network.

2.8.6 The Application Discovery Protocol

Initial Condition: The Managers have discovered their managees and the
ManagedApplications know all Managers in the Network (they got this information from
their MOMs).

Protocol: The CST Protocol is used between the writerApplications of the Managers and the

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 153 –

readerApplications of the ManagedApplications.

Final Condition: The ManagedApplications have discovered the other
ManagedApplications in the Network.

2.8.7 Services Discovery Protocol

This subclause describes how the ManagedApplications transfer information to each other
about their local Services.

As mentioned previously, every ManagedApplication has two special CSTWriters,
writerPublications and writerSubscriptions, and two special CSTReaders, readerPublications
and readerSubscriptions.

The Composite State that the CSTWriters make available on the Network are the attributes
of all the local Publication and Subscriptions. The CSTWriter
writerPublications/Subscriptions needs to instantiate a local CSTRemoteReader for each
remote ManagedApplication on the Network.

Similarly, the CSTReaders writerPublication/Subscription need to instantiate a
CSTRemoteWriter for each remote ManagedApplication on the Network.

Once ManagedApplications have discovered each other, they use the standard CST protocol
through these special CSTReaders and CSTWriter to transfer the attributes of all
Publications and Subscriptions in the Network.

Because all CSTRemoteReaders and CSTRemoteWriters for Service-discovery are known
(as a result of Application-Discovery), the CST Protocol must support the acknowledgement
of received issues (fullAcknowledge==TRUE) and repeated heartbeating should be turned
off (repeatAnnouncePeriod==INFINITE).

Initial Condition: The ManagedApplications have discovered each other on the Network.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 154 – PAS 62030 © IEC:2004 (E)

Protocol: CST Protocol from writerPublications to readerPublications and from
writerSubscriptions to readerSubscriptions (repeatAnnouncePeriod==INFINITE and
fullAcknowledge==TRUE).

Final Condition: The ManagedApplications know about each other’s Services.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 155 –

Annex A of Section 2
(informative)

CDR for RTPS

The following is a summary of the CDR data format and the OMG IDL syntax to the extent
that they are used by the RTPS protocol and its description in this PAS.

The authoritative source of the CDR specification and OMG IDL is the CORBA protocol
(available through the Object Management Group). In the CORBA V2.3.1 spec, the relevant
sections are 15.3 (General Inter-ORB Protocol—CDR Transfer Syntax) and 3.10 (OMG IDL
Syntax and Semantics— Type Declaration). Unless mentioned explicitly, CDR for RTPS
follows the CDR standard for GIOP version 1.1.

RTPS makes some additional restrictions on CDR and makes concrete choices where CDR for
GIOP 1.1 is not fully defined. Notable are the implementation of the wide characters and
strings (wchar and wstring) and the definition of the RTPSIdentifier, which only allows
certain characters.

A.1 Primitive Types

A.1.1 Semantics

OMG IDL-name size meaning
octet 1 8 uninterpreted bits
boolean 1 TRUE or FALSE
unsigned short 2 integer N, 0 <= N < 2^16
short 2 integer N, -2^15 <= N < 2^15
unsigned long 4 integer N, 0 <= N < 2^32
long 4 integer N, -2^31 <= N < 2^31
unsigned long long 8 integer N, 0 <= N < 2^64
long long 8 integer N, -2^63 <= N < 2^63
float 4 IEEE single-precision fp number
double 8 IEEE double-precision fp number
char 1 a character following ISO8859-1
wchar 2 a wide-character following UNICODE

Remarks:

─ CDR defines some additional primitive types, such as "long double"; these are
currently disallowed by RTPS.

─ CDR leaves the width of the wchar open; RTPS gives it a fixed length of two bytes.

A.1.2 Encoding

CDR has both a big-endian ("BE") and a little-endian ("LE") encoding. The sender is allowed
to choose the encoding. The receiver needs to know which encoding has been used by the
sender to unpack the data correctly. This endianness-bit is transmitted as part of the RTPS
protocol.

A.1.3 octet

BE/LE
0...2...........7
+-+-+-+-+-+-+-+-+
|7|6|5|4|3|2|1|0|
+-+-+-+-+-+-+-+-+

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 156 – PAS 62030 © IEC:2004 (E)

A.1.4 boolean

TRUE BE/LE
0...2...........7
+-+-+-+-+-+-+-+-+
|0|0|0|0|0|0|0|1|
+-+-+-+-+-+-+-+-+

FALSE BE/LE
0...2...........7
+-+-+-+-+-+-+-+-+
|0|0|0|0|0|0|0|0|
+-+-+-+-+-+-+-+-+

A.1.5 unsigned short

BE
0...2...........7...............15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|MSB | LSB|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
LE
0...2...........7...............15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LSB|MSB |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.1.6 short

A short has the same encoding as an unsigned short, but uses 2's complement representation.

A.1.7 unsigned long

BE
0...2...........7...............15..............23..............31
+-+
|MSB |MSB X |MSB Y | LSB|
+-+

LE
0...2...........7...............15.............23...............31
+-+
| LSB|MSB Y |MSB X |MSB |
+-+

A.1.8 long

A long has the same encoding as an unsigned long, but uses 2's complement representation.

A.1.9 unsigned long long

BE
0...2...........7...............15.............23...............31
+-+
|MSB |MSB A |MSB B |MSB C |
+-+
|MSB D |MSB E |MSB F | LSB|
+-+

LE
0...2...........7...............15.............23...............31
+-+
| LSB|MSB F |MSB E |MSB D |
+-+
|MSB C |MSB B |MSB A |MSB |
+-+

A.1.10 long long

A long long has the same encoding as an unsigned long long, but uses 2's complement
representation.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

PAS 62030 © IEC:2004 (E) – 157 –

A.1.11 float

BE
....2...........8...............16.............24...............32
+-+
|S| E1 |E| F1 | F2 | F3 |
+-+

LE
....2...........8...............16.............24...............32
+-+
| F3 | F2 |E| F1 |S| E1 |
+-+

A.1.12 double

BE
....2...........8...............16.............24...............32
+-+
|S| E1 | E2 | F1 | F2 | F3 |
+-+
| F4 | F5 | F6 | F7 |
+-+

LE
....2...........8...............16.............24...............32
+-+
| F7 | F6 | F5 | F4 |
+-+
| F3 | F2 | E2 | F1 |S| E1 |
+-+

A.1.13 char

A character has the same encoding as an octet.

A.1.14 wchar

A wide-character occupies two octets and follows UNICODE encoding.

A.2 Constructed Types

A.2.1 Alignment

In CDR, only the primitive types listed in Section A.1 have alignment constraints. The
primitive types need to be aligned on their length. For example, a long must start on a 4-byte
boundary. The boundaries are counted from the start of the CDR stream.

A.2.2 Identifiers

An identifier is a sequence of ASCII alphabetic, numeric and underscore characters. The first
character must be an ASCII alphabetic character.

A.2.3 List of constructed types

RTPS supports the following subset of CDR constructed types:

struct structure

array fixed size array (the length is part of the type)

sequence variable size array (the maximum length is part of the type)

enum enumeration

string string of 1-byte characters

wstring string of wide characters
NOTE There are some additional constructed types in CDR, such as unions and fixed-point decimal types; these
are currently not supported in RTPS.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 – 158 – PAS 62030 © IEC:2004 (E)

A.2.4 Struct

A structure has a name (an identifier) and an ordered sequence of elements. Each element
has a name (an identifier) and a type. In OMG IDL, a structure is defined by the keyword
"struct", followed by an identifier and a sequence of the elements of the structure. An
example of the definition of a structure named "myStructure" in OMG IDL is:

struct myStructure {
 long long l;
 unsigned short s;
 myType t;
}

In CDR, the components of such a structure are encoded in the order of their declaration in
the structure. The only alignment requirements are at the level of the primitive types.

A.2.5 Enumeration

An enumeration has a name (an identifier) and an ordered set of case-keywords which also
are identifiers. In OMG IDL, an enumeration is defined by the keyword "enum", followed by
an identifier and a list of identifiers in the enumeration. For example:

enum myEnumeration { case1, case2, case3 }

In CDR, enumerations are encoded as unsigned longs, where the identifiers in the
enumeration are numbered from left to right, starting with 0.

A.2.6 Sequence

A sequence is a variable number of elements of the same type. Optionally, the type can
specify the maximum number of elements in the sequence. OMG IDL uses the keyword
"sequence". The syntax for an unbounded sequence of floats is:

sequence<float>

The syntax for a sequence of unsigned long longs with a maximum length is:
sequence<unsigned long long, MAX_NUMBER_OF_ELEMENTS>

In CDR, sequences are encoded as the number of elements (as an unsigned long) followed by
each of the elements in the sequence.

A.2.7 Array

Arrays have a fixed and well-known number of elements of the same type. In OMG IDL, an
array is defined using the symbols "[" and "]", following the C/C++ style. An example is:

float[17]

In CDR, arrays are encoded by encoding each of its elements from low to high index. In
multi-dimensional arrays, the index of the last dimension varies most quickly.

A.2.8 String

A string is an optionally bounded sequence of characters. In OMG IDL, a string of
unbounded length is identified by the keyword "string"; a bounded string is specified as
follows:

string<MAX_LENGTH>

MAX_LENGTH is the maximum number of actual characters in the string (not including a
possible terminating zero). For example: the string "Hello" can be stored in a variable of type
string<5>.

On the wire, strings are encoded as an unsigned long (indicating the number of octets that
follow to encode the string), followed by each of the characters in the string and a
terminating zero. For example, the string "Hello" is encoded as the unsigned long 6 followed

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

PAS 62030 © IEC:2004 (E) – 159 –

by the octets ’H’, ’e’, ’l’, ’l’, ’o’, 0.

A.2.9 Wstring

A wide-string is a string of wide-characters. In OMG IDL, unbounded and bounded strings
are specified, respectively, as follows:

wstring
wstring<MAX_LENGTH>

In CDR (GIOP 1.1), a wide-string is encoded as an unsigned long indicating the length of the string
on octets or unsigned integers (determined by the transfer syntax for wchar), followed by the indi-
vidual wide characters. Both the string length and contents include a terminating NULL.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Standards Survey

The IEC would like to offer you the best quality standards possible. To make sure that we
continue to meet your needs, your feedback is essential. Would you please take a minute
to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to
the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission
3, rue de Varembé
1211 Genève 20
Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

Non affrancare
No stamp required

Nicht frankieren
Ne pas affranchir

 A Prioritaire

RÉPONSE PAYÉE

SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
1211 GENEVA 20
Switzerland

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Q1 Please report on ONE STANDARD and
ONE STANDARD ONLY . Enter the exact
number of the standard: (e.g. 60601-1-1)

...

Q2 Please tell us in what capacity(ies) you
bought the standard (tick all that apply).
I am the/a:

purchasing agent R

librarian R

researcher R

design engineer R

safety engineer R

testing engineer R

marketing specialist R

other...

Q3 I work for/in/as a:
(tick all that apply)

manufacturing R

consultant R

government R

test/certification facility R

public utility R

education R

military R

other...

Q4 This standard will be used for:
(tick all that apply)

general reference R

product research R

product design/development R

specifications R

tenders R

quality assessment R

certification R

technical documentation R

thesis R

manufacturing R

other...

Q5 This standard meets my needs:
(tick one)

not at all R

nearly R

fairly well R

exactly R

Q6 If you ticked NOT AT ALL in Question 5
the reason is: (tick all that apply)

standard is out of date R

standard is incomplete R

standard is too academic R

standard is too superficial R

title is misleading R

I made the wrong choice R

other ..

Q7 Please assess the standard in the
following categories, using
the numbers:
(1) unacceptable,
(2) below average,
(3) average,
(4) above average,
(5) exceptional,
(6) not applicable

timeliness ...
quality of writing....................................
technical contents.................................
logic of arrangement of contents
tables, charts, graphs, figures
other ..

Q8 I read/use the: (tick one)

French text only R

English text only R

both English and French texts R

Q9 Please share any comment on any
aspect of the IEC that you would like
us to know:

..

..

..

..

..

..

..

..

..

..

..

..

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

--`,````,,,```,,,`,,,``,``-`-`,,`,,`,`,,`---

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ICS 25.040.40; 35.240.50

Typeset and printed by the IEC Central Office
GENEVA, SWITZERLAND

 ISBN 2-8318-7740-7

-:HSMINB=]\\YUW:

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/22/2006 23:21:46 MSTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
`
`
`
,
,
,
`
`
`
,
,
,
`
,
,
,
`
`
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

