American National Standard Letter Symbols and Abbreviations for Quantities Used in Acoustics

Sponsor

IEEE Standards Coordinating Committee 14 on

Approved 21 March 1996

IEEE Standards Board

Approved 3 October 1996

American National Standards Institute

Abstract: Letter symbols for physical quantities used in the science and technology of acoustics are covered. Abbreviations for a number of acoustical levels and related measures that are in common use are also given. The symbols given in this standard are intended for all applications. **Keywords:** abbreviations, acoustical levels, acoustics, infrasound, letter symbols, physical quantities, sound, sound levels, symbols, ultrasound, units, vibration

ISBN 1-55937-748-8

The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 1996. Printed in the United States of America.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board 445 Hoes Lane P.O. Box 1331 Piscataway, NJ 08855-1331 USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying all patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (508) 750-8400. Permission to photocopy portions of any individual standard for educational class-room use can also be obtained through the Copyright Clearance Center.

Introduction

(This introduction is not a part of ANSI/IEEE Std 260.4-1996, American National Standard Letter Symbols and Abbreviations for Quantities Used in Acoustics.)

This revision was prepared under the auspices of the IEEE Standards Coordinating Committee on Quantities, Units, and Letter Symbols (SCC14) by its Subcommittee on Acoustics (SCC14.5). At the time of approval of this standard, the membership of Subcommittee 14.5 was as follows:

Stanley L. Ehrlich, Chair

Frank W. Cuomo Louis A. Herstein Roger L. Kerlin Chris E. Kuyatt Daniel W. Martin Wesley L. Nyborg John T. Scott Victor W. Sparrow Geoffrey L. Wilson Robert W. Young Allan J. Zuckerwar

Members of IEEE Standards Coordinating Committee for Quantities, Units, and Letter Symbols, SCC14, who participated in the approval of this standard were

Bruce B. Barrow, Chair Barry N. Taylor, Vice Chair

William Aird O. C. Amrhyn William Brenner Stanley L. Ehrlich Robert V. Esperti John A. Goetz Richard G. Gould Gadi Kaplan William R. Kruesi Chris E. Kuyatt Jack M. Loudon Arthur O. McCoubrey Conrad R. Muller Wesley Nyborg Chester H. Page Ralph M. Showers Raymond S. Turgel Alan S. Whelihan Theodore Wildi Geoffrey L. Wilson When the IEEE Standards Board approved this standard on 21 March 1996, it had the following membership:

Donald C. Loughry, *Chair*

Richard J. Holleman, Vice Chair

Andrew G. Salem, Secretary

Gilles A. Baril Clyde R. Camp Joseph A. Cannatelli Stephen L. Diamond Harold E. Epstein Donald C. Fleckenstein Jay Forster* Donald N. Heirman Ben C. Johnson E. G. "Al" Kiener Joseph L. Koepfinger* Lawrence V. McCall L. Bruce McClung Marco W. Migliaro Mary Lou Padgett John W. Pope Jose R. Ramos Arthur K. Reilly Ronald H. Reimer Gary S. Robinson Ingo Rüsch John S. Ryan Chee Kiow Tan Leonard L. Tripp Howard L. Wolfman

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal Alan H. Cookson Chester C. Taylor

Mary Lynne Nielsen IEEE Standards Project Editor

Contents

CLAU	SE	PAGE
1.	Overview	1
2.	References	1
3.	General principles of letter symbol standardization	2
	3.1 Letter symbols	2
	3.2 Alphabets and typography	2
	3.3 Remarks concerning quantity symbols	
	3.4 Remarks concerning unit symbols	
	3.5 The International System of Units (SI)	5
	3.6 Usage	6
	3.7 Unit symbols to be used with limited character sets	7
4.	Principles applicable to letter symbols and abbreviations for quantities used in	acoustics7
	4.1 Time-varying quantities	7
	4.2 Average values	
	4.3 Quantities per unit volume, area, or length	
	4.4 Sequence for double subscripts to multiplying operators	
	4.5 Remarks concerning levels	
	4.6 Remarks concerning abbreviations	
5.	Introduction to the tables	
6.	Bibliography	
TAB	ES	
Table	A	
Table	B	6
Table	1	
Table	2	
Table	3	
Table	4	
Table	5	
Table	6	
Table	7	
Table	8	
Table	9	
Table	10	
Table	11	
Table	12	
Table	13	

American National Standard Letter Symbols and Abbreviations for Quantities Used in Acoustics

1. Overview

This standard covers letter symbols¹ for physical quantities² used in the science and technology of acoustics; it also covers abbreviations for a number of acoustical levels and related measures that are in common use.

The science and technology of acoustics include sound, ultrasound, and infra-sound in all media: gases, especially air; liquids, especially water; and solids are examples of media with which acoustics is concerned. There are many specialties in acoustics, a few of which are speech, hearing, music, noise control, vibration, shock, and sonar.

The symbols given in this standard are intended for all applications, including use in text and equations; in graphs and diagrams; and on panels, labels, and nameplates.

"General principles of letter symbol standardization" common to SCC14 standards are given before the more specialized "principles applicable to letter symbols and abbreviations for quantities used in acoustics." These are followed by the "introduction to the tables" and a "bibliography."

2. References

This standard shall be used in conjunction with the following publication. When the following standard is superseded by an approved revision, the revision shall apply.

ANSI/IEEE Std 268-1992, American National Standard for Metric Practice.³

¹"Letter symbol" as a technical term does not have the same meaning as either "name" or "abbreviation." An abbreviation is a letter or a combination of letters (plus sometimes an apostrophe or a full stop, i.e., a period) that by convention represents a *word* or a *name* in a particular language; hence, an abbreviation may be different in a different language. A symbol represents a *physical quantity* or a *unit* and is therefore independent of language. Example: For electromotive force, the symbol is *E*, whereas the abbreviation is emf in English, fem in French, and EMK in German. The unit names "ampere" and "second" have sometimes been abbreviated amp and sec, respectively, but this usage is now deprecated. The standard unit symbols for ampere and second are A and s, respectively.

 $^{^{2}}$ As used in this standard, the term *physical quantity* means a measurable attribute of phenomena or matter. Examples are length, mass, and time.

3. General principles of letter symbol standardization

3.1 Letter symbols

Letter symbols include symbols for physical quantities (quantity symbols) and symbols for units in which these quantities are measured (unit symbols).

A quantity symbol is, in general,⁴ a single letter (for example, I for electric current) specified as to style of type font (e.g., bold, italic) and modified when appropriate by one or more subscripts or superscripts. In a given work the same letter symbol should appear throughout for the same physical quantity, regardless of the units employed or of special values assigned.

A unit symbol⁵ is a letter or group of letters (for example, mm for millimeter), or in a few cases a special sign, that may be used in place of the name of a unit.

3.2 Alphabets and typography

Letter symbols are mainly restricted to the English and Greek alphabets. Greek letters that are easily confused with English letters shall be avoided. The type families that are used for text in modern book and journal publishing all include italic (oblique) type faces and related roman (upright) faces. The former are used for quantity symbols, and the latter, for unit symbols. The distinctions are discussed more fully in the following paragraphs. (In the context of this standard, the term *roman* is used simply to mean upright in contrast with oblique and carries no connotation regarding serifs, line widths, or the like.) In situations where roman and italic fonts are not both available, care shall be taken to avoid confusion between quantities and units. For example, an underline is frequently used to indicate italic type, and where an underline can be provided, as in manual typewriting, this practice is often helpful.

Unconventional type faces should generally not be used for letter symbols. Script and Old English faces, for example, are not appropriate for unit symbols. Such special faces have seen limited use for quantity symbols, but good modern practice avoids them.

Symbols for physical quantities, mathematical variables, indexes, and general functions⁶ are printed in italic type. For example:

Α	area
е	elementary electric charge
<i>x</i> , <i>y</i> , <i>z</i>	Cartesian coordinates
i, j, k, n	indexes
f(x)	function of <i>x</i>

Symbols for units of measurement, mathematical constants, specific mathematical functions, operators, and numerals used as indexes are printed in roman type. For example:

cm centimeter

³IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA.

 $^{^{4}}$ Symbols composed of two letters are sometimes used for numerical transport parameters, such as Re for Reynolds number.

⁵Unit symbols have sometimes been treated in the same manner as general abbreviations, but the recommendations of the International Committee for Weights and Measures (CIPM), and of many other international and national bodies concerned with standardization, emphasize the symbolic character of these designations and rigidly prescribe the manner in which they shall be treated. This concept of the unit symbol is therefore adopted in this standard.

⁶The term *general functions* is here used to contrast with *specific mathematical functions*, for which roman type is to be used.

e	base of natural logarithms
sin x	sine of x
$J_2(z), J_n(z)$	Bessel functions
dx	differential of x

Subscripts and superscripts are governed by the preceding principles. Those that are letter symbols for quantities or for indexes are printed in italic type, while all others are printed in roman type. For example:

C_p	heat capacity at constant pressure p
a_{ij}, a_{45}	matrix elements
$I_{\rm i}, I_{\rm o}$	input current, output current
$x_{\rm av}$	average value of <i>x</i>

For indicating the vector character of a quantity, boldface italic type is used. For example:

F	force
Н	magnetic field strength

Ordinary italic type is used to represent the magnitude of a vector quantity. It is also commonly used for a vector quantity when there is no need to draw attention to the vector character of the quantity.

When tensor quantities of second or higher order are to be represented by a single letter, sans serif type should be used (for example, $\boldsymbol{h}, \boldsymbol{B}$).

3.3 Remarks concerning quantity symbols

Quantity symbols may be used in mathematical expressions in any way consistent with good mathematical usage. The product of two quantities a, b, is indicated by writing ab. The quotient may be indicated by writing

$$\frac{a}{b}$$
, a/b , or ab^{-1}

If more than one slash (/) is used in any algebraic term, parentheses shall be inserted to remove any ambiguity. Thus, one may write (a/b)/c, or a/(b/c), but not a/b/c.

Subscripts and superscripts are widely used with quantity symbols. Several subscripts and superscripts, sometimes separated by commas, may be attached to a single letter. But, so far as logical clarity permits, subscripts and superscripts should not be attached to other subscripts and superscripts. A symbol that has been modified by a superscript should be enclosed in parentheses before an exponent is attached.

Conflicts that occur because different quantities are assigned identical symbols in the same or different standard symbol lists should be resolved in one of the following ways:

- a) By use of a reserve symbol (alternative symbol) if one is listed
- b) By use of a subscript or superscript selected by the author for one or more of the conflicting requirements
- c) By use of uppercase letters as variants for lowercase letters and vice versa, but only if no ambiguity results

3.4 Remarks concerning unit symbols

A roman (upright) type font shall be used for unit symbols, even when the surrounding text is in an italic font. In general, unit symbols are lowercase letters, except for a very few that use special signs (such as \degree for degree). If, however, the symbol is for a unit whose name is derived from a proper name, uppercase roman type is used for the first letter.⁷

As a further exception to the general rule, the symbol L is used for liter to avoid confusion between the lowercase letter 1 and the numeral 1. Some additional exceptions arise in the special cases where symbols are joined, as in eV, the symbol for electronvolt, and in mmHg, the symbol for conventional millimeter of mercury, a unit of pressure. The distinction between uppercase and lowercase letters shall be followed, even if the symbol appears in applications where the other lettering is uppercased. The form of unit symbols is the same for both singular and plural, and they are not followed by a period except at the end of a sentence.

In the complete expression for a quantity, a space should be left between the numerical value and the unit symbol. For example, write 35 mm, not 35mm, and 2.371 m, not 2.371m. When the quantity is used in an adjectival sense, a hyphen is often used in lieu of a space between the number and the unit name or between the number and the symbol.

Examples:

A 3-meter pole. The length is 3 meters.

A 35-mm film. The width is 35 mm.

EXCEPTION: No space is left between the numerical value and the symbols for degree, minute, and second of plane angle.

When a compound unit is formed by multiplication of two or more other units, its symbol consists of the symbols for the separate units joined by a raised dot (preferred) or separated by a space (for example, N·m or N m for newton meter). The dot may be omitted in the case of familiar compounds, such as watthour (symbol Wh), if confusion is unlikely. Hyphens should not be used in symbols for compound units. Positive and negative exponents may be used with the symbols for units.

When a compound unit is formed by division of one unit by another, its symbol is constructed in one of the following forms:

m/s or m·s⁻¹ or $\frac{m}{s}$

In simple cases use of the slash is preferred, but in no case should more than one slash, or a slash followed by a product, be used in the same expression

unless parentheses are inserted to avoid ambiguity. For example, write:

 $J/(mol \cdot K)$ or $J \cdot mol^{-1} \cdot K^{-1}$ or (J/mol)/K

but not J/mol/K or J/mol·K

In complicated cases, negative powers should be used.⁸

⁷Many units are derived from proper names. Examples include the ampere, for which the letter symbol is A, and the kelvin, for which the letter symbol is K. Prefixes are considered separately (see 3.5).

⁸The notation for products and quotients of unit symbols is intentionally made more explicit than that given in 3.3 for quantity symbols because some unit symbols are composed of more than one letter.

Letter symbols and mathematical notation should not be mixed with unit names in the same expression. For example, write joules per kilogram or J/kg. Do not write joules/kilogram or joules/kg or J/kilogram.

3.5 The International System of Units (SI)

In this standard, some units are identified as SI units. These units belong to the International System of Units (Système International d'Unités), which is the name given in 1960 by the General Conference on Weights and Measures (Conférence Générale des Poids et Mesures) to the coherent system of units built upon the base units in table A.

Unit	Physical quantity
meter	length
kilogram	mass
second	time
ampere	electric current
kelvin	thermodynamic temperature
mole	amount of substance
candela	luminous intensity

This standard uses the spellings *meter*, *liter*, and *deka* in accordance with common US usage. The alternative spellings *metre*, *litre*, and *deca* may also be used.⁹

The prefixes in table B are used to indicate decimal multiples or submultiples of SI units.

Compound prefixes, formed by the juxtaposition of two or more SI prefixes, are not to be used. For example, use

nm, *not* mμm pF, *not* μμF

For historical reasons, although the SI unit of mass is the kilogram (kg), the SI prefixes are attached to the gram (g). Thus, milligram (mg), *not* microkilogram (μ kg).

If values are required outside the range covered by the prefixes, they should be expressed using powers of ten applied to the unit in question. Thus, 10^{-34} J.

An exponent attached to a symbol containing a prefix indicates that the multiple or submultiple of the unit (the unit with its prefix) is raised to the power expressed by the exponent. For example:

cm³ Δ (10⁻² m)³ = 10⁻⁶ m³

⁹The spelling of some unit names varies from language to language. One of the principal advantages of unit symbols is that they are language invariant.

Multiple	SI prefix	Symbol
10 ²⁴	yotta	Y
10 ²¹	zetta	Z
10 ¹⁸	exa	Е
10 ¹⁵	peta	Р
10 ¹²	tera	Т
109	giga	G
10 ⁶	mega	М
10 ³	kilo	k
10 ²	hecto	h
10	deka	da
10-1	deci	d
10-2	centi	с
10 ⁻³	milli	m
10-6	micro	μ
10 ⁻⁹	nano	n
10-12	pico	р
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	a
10 ⁻²¹	zepto	Z
10 ⁻²⁴	yocto	у

Table B—SI prefixes

where $\underline{\Delta}$ indicates equality by definition.

For further information concerning metric practice and the SI, refer to ANSI/IEEE Std 268-1992.¹⁰

3.6 Usage

The use of unit symbols in place of full names of the units is frequently desirable where space is restricted. Their use presupposes that the reader will find them intelligible. When an unfamiliar unit symbol is first used in text, it should be followed by its name in parentheses or the name should be given with the symbol in parentheses; the symbol may be used alone thereafter. Explanatory notes or keys should be included where appropriate on drawings and in tabular matter.

¹⁰Information about references can be found in clause 2.

Attachment of letters to a unit symbol as a means of giving information about the quantity under consideration is incorrect. Thus MWe for "megawatts electrical (power)," Vac for "volts ac," and kJt for "kilojoules thermal (energy)" are not acceptable. For this reason, no attempt should be made to construct SI equivalents of the abbreviations "psia" and "psig," so often used to distinguish between absolute and gage pressure. If the context leaves any doubt as to which is meant, the word pressure has to be qualified appropriately. For example:

"...at a gage pressure of 13 kPa" or "...at an absolute pressure of 13 kPa"

When space limitations make it necessary to juxtapose information about the quantity being measured with the unit name or unit symbol, such information shall be separated from the unit symbol by a space, by a comma followed with a space, or the equivalent. Thus, the following examples are appropriate for use on nameplates, gage scale plates, table headings, graph labels, etc.:

```
rating—115 V ac
kPa, gage
kPa (abs)
```

On the other hand, letters may be attached to a unit symbol where needed to identify properly the unit involved. In such symbols as inHg, mmHg, and ftH₂O, the suffixes are needed to identify the units, which are units of pressure, not of length. Similarly, it is proper to write Btu_{IT} , cal_{th} , gal_{US} , etc., to distinguish from the related but different units Btu_{60} , cal_{15} , gal_{UK} , etc.

3.7 Unit symbols to be used with limited character sets

Refer to clauses 6.1 through 6.6 of ANSI/IEEE Std 260.1-1993 for a detailed discussion. Topic headings include: Character Set Lacks Greek Letters (6.1); Character Set Lacks Superscript Symbols (6.2); Character Set Lacks Superscript Numerals (6.3); Character Set Lacks Raised Dot (6.4); Character Set Limited to a Single Case (6.5); Examples of Symbols for Limited Character Sets (6.6).

4. Principles applicable to letter symbols and abbreviations for quantities used in acoustics

4.1 Time-varying quantities

When subscripts are used to denote various values associated with a time-varying quantity, the subscripts (for the values indicated) shall conform with the following list:

	<u>Preferred</u>	Reserve
instantaneous value	i	Ι
peak value	pk, k	PK
average value	av	AV
root-mean-square value	rms	RMS
maximum value	max, m	MAX, M
minimum (valley, nadir) value	min, n	MIN, N

When no subscript appears, the symbol is understood to represent the root-mean-square value. The subscript "eff" has been adopted for root-mean-square (rms) value by the IEC, but it is not recommended in this standard.

4.2 Average values

The average value of a quantity with respect to time may be indicated by a superscript bar, e.g., \overline{p} . Likewise, the spatial average may be indicated by enclosing the symbol in elbow brackets, e.g., $\langle w \rangle$.

4.3 Quantities per unit volume, area, or length

It is recommended that quantities per unit volume, area, or length be represented, where practical, by lowercase letters corresponding to the uppercase letters that represent the total quantities, or by the uppercase letter with the subscript v, a, or l, except for those quantities for which this standard gives a specific symbol for the quantity per unit volume, area, or length.

4.4 Sequence for double subscripts to multiplying operators

The sequence of double subscripts to the multiplying coefficients (mutual impedances, resistances, transconductances, etc.) that occur in systems of equations is to be determined as follows. The first subscript in the symbol shall agree with the subscript of the quantity resulting from the multiplication, and the second subscript shall agree with that of the multiplicand.

Example:

$$V_1 = Z_{11}I_1 + Z_{12}I_2 + Z_{13}I_3$$

4.5 Remarks concerning levels

A level is treated like any other quantity and may be represented by a quantity symbol with a subscript, as listed in tables 8, 9, and 10. The name "level," by itself, is incomplete because there are many different kinds of levels, e.g., voltage level, power level, and A-weighted sound level. Moreover, the statement of the value of a level is incomplete unless the reference quantity is known to the reader. Levels in decibels are generally expressed as ten times the logarithm of a power or an energy ratio. For field quantities (such as voltage or force, for which the square is proportional to power or energy), levels in decibels are commonly expressed as twenty times the logarithm of a field quantity ratio. For quantities (such as impedance or admittance, which sometimes are proportional to an energy and other times to a field quantity), the use of "level" is deprecated.

4.5.1 Notation for expressing the reference of a level

A level representing a quantity x with a reference quantity x_{ref} may be indicated by:

 L_x (re x_{ref}) or $L_{x/x_{ref}}$

Examples:

The statement that a certain sound pressure level in air is 15 dB above the level corresponding to a reference pressure of 20 μ Pa can be written as

 L_p (re 20 µPa) = 15 dB or $L_{p/20 \text{ µPa}} = 15 \text{ dB}$

The statement that the level of a current is 10 Np below 1 A can be written as

 L_I (re 1 A) = -10 Np

The statement that a certain power level is 72 dB above 1 pW can be written as

 L_W (re 1 pW) = 72 dB

in a situation where the reserve symbol L_W is needed to avoid confusion.

The statement that a certain electric field strength level is 50 dB above 1 μ V/m can be written as

 L_E (re 1 μ V/m) = 50 dB

In presenting data, particularly in tabular form or in graphical symbols, a condensed notation is often needed for identifying the reference value. Then the following condensed form, illustrated by application to the above examples, may be used:

15 dB (20 μPa) -10 Np (1 A) 72 dB (1 pW) 50 dB (1 μV/m)

Note that there is a space before the parentheses.

In the expression of a reference quantity, the "1" is sometimes omitted. This is not recommended because confusion may occur.

When a constant reference quantity is explained in the text and used repeatedly in a given context, the reference quantity need not be restated at each subsequent use.

4.5.2 Indication of the weighting of a level

Frequently in acoustics, a sound pressure level or a sound power level is said to be weighted according to the A, B, C, D, or other frequency weighting curve. These are commonly called weighted levels, but they properly should be called levels of weighted pressure or power. With any weighted level, the unit of measurement is unchanged. It is still the decibel, or bel, or neper. The practice of indicating weighting by attaching letters to dB, as in dBA or PNdB, has led to the incorrect belief that weighted levels are measured on a different scale, or by a frequency weighted decibel. *Such attachments are incorrect, and are strongly deprecated*.

The designation PNdB is deprecated for any use, whether to mean perceived noise level or a nonexistent perceived noise decibel.

The decibel itself is never weighted. The symbol dB is a unit symbol, and it is neither a quantity symbol nor an abbreviation for level.

Any qualification of a level should be indicated, not by attaching letters to the unit symbol dB or B or Np, but by attaching appropriate subscripts to the quantity symbol L, or by an appropriate abbreviation, as shown in tables 8, 9, and 10. An example is L_{AF} for fast, A-weighted sound level. In a limited context, where it has been made clear what kind of weighting is concerned, the symbol L may be used without a subscript.

4.5.3 Sequence of subscripts for a level

A succession of subscripts on *L*, the quantity symbol for a level, identifies the kind of level and the frequencywise and timewise modifications of it. For example, L_{PA} first of all represents the level of a power, for which the symbol is *P*; secondly, the A signifies that A-frequency weighting was applied.

In acoustics, the absence of a first subscript for the kind of level is an indication that the symbol L stands for a sound pressure level. The subscripts signify modifications of sound pressure level. For example, L_{AS} repre-

sents the level of A-frequency weighted, squared sound pressure followed by slow exponential time averaging.

As another example, L_{C8h} represents an 8-h average, C-weighted sound level; the C-frequency weighting was applied to the sound pressure signal; next, the sound pressure was squared; then the arithmetic mean of the squared sound pressures was taken during 8 h; finally, the level was obtained.

Sound level is understood to mean A-weighted sound pressure level if no frequency weighting is specified. Hence, in a context in which only sound level is involved, *L* represents (A-weighted) sound level, and L_{av8h} or simply L_{8h} represents an 8-h average sound level. The usual unit of all these levels is the decibel.

Maximum tone-corrected perceived noise level is a special frequency-weighted sound pressure level with nominally "slow" time averaging. The quantity symbol is L_{PNTmax} . The first two subscript letters PN signify the somewhat involved "perceived noise" frequency weighting; the subscript T signifies a further frequency weighting for prominent tonal components; after the slow exponential time average, another time weighting identified by max is applied by selection of the greatest tone-corrected perceived noise level that occurs during (for example) the flyover of an aircraft.

4.6 Remarks concerning abbreviations

An abbreviation is a shortened form of a word or phrase, used to represent the complete form. The shortened form is obtained by omission of some letters, even all of the letters of some words. The abbreviations recommended in this standard use capital letters.

4.6.1 Use of abbreviations

Abbreviations are to be used only where necessary to save space and time. The time saved by a writer who uses an abbreviation is often less than the time lost by each reader who has to find its meaning. An abbreviated term should be spelled out in full at its first appearance in text, followed by the abbreviation in parentheses. In addition, a glossary may be provided for the convenience of the reader.

Abbreviations for the names of quantities are used as nouns because the names they stand for are nouns or noun phrases. They may also be used as adjectives, as for example: "the day-night average sound level limit" may be abbreviated to "the DNL limit." As a further example, the statement, "The limit is 92 decibels, fast, A-weighted sound level at 15 meters" can be shortened to "The FA limit at 15 m is 92 dB."

Abbreviations should not immediately follow a unit symbol. For example, instead of "92 dB FA," use "FA: 92 dB."

4.6.2 International use

Abbreviations should be carefully considered, and perhaps especially avoided, in publications and drawings that are intended for circulation internationally because they are formed from words that often differ from one language to another. In this respect, abbreviations stand in contrast to letter symbols for quantities and units that are standardized internationally.

4.6.3 Mathematics

Abbreviations should not be used in mathematical formulations. Letter symbols should be used instead.

4.6.4 Sequence of letters in an abbreviation

The original sequence of letters in the words and of words in any phrase is to be maintained in an abbreviation. As an example, day-night average sound level is abbreviated to DNL; the single letter L in this context serves as the abbreviation for average sound level. LDN or Ldn is not a correct abbreviation for day-night average sound level because LDN or Ldn is not a shortened form of the full phrase.

In phrases and abbreviations in this standard for oscillating quantities, the averaging time is stated first, the limiting frequency band second, the kind of variable next, and, finally, the level. For example, 8HL is the abbreviation for 8-h average sound level; much of the abbreviation is feasible because sound level unmodified has the connotation of sound pressure level within the frequency band delimited by the A-frequency weighting. As a longer example of the sequence, slow octave-band sound pressure level centered on 125 Hz may be abbreviated to SOBSPL at 125 Hz.

4.6.5 Invariance of form

The form of an abbreviation shall be invariant. Syntactical endings shall not be used. For example, an "s" shall not be added to indicate plural.

4.6.6 Subscripts

Subscripts shall not be used in or with abbreviations.

4.6.7 Punctuation

Except as shown in abbreviations in this standard, punctuation marks shall not be used as part of an abbreviation. However, a period may be placed at the end of any abbreviation that spells an English word if the omission of such a period could result in confusion.

4.6.8 Additional abbreviations

For abbreviations of terms other than those in this standard, refer to ANSI Y10.1-1972 [B3].¹¹

5. Introduction to the tables

Tables 1 through 10 list quantities, grouped in several categories, and give quantity symbols for each. In addition, tables 8 through 10 give standard abbreviations for the quantities listed. (Abbreviations are usually not appropriate for the quantities listed in tables 1 through 7.) Only abbreviations are given for some quantities that are not operated on mathematically and that therefore do not require letter symbols. To aid in identifying the quantities, their units based on the International System of Units (SI) and their standard unit symbols are included.

A quantity shall be represented by the standard symbol appearing in the tables, regardless of the units in which it is expressed. Those quantity symbols that are separated by a comma are alternatives on equal standing. A symbol enclosed in parentheses is a reserve symbol to be used only when there is a specific need to avoid a conflict.

Tables 1, 2, 3, and 5 contain quantities of interest in acoustics, many of whose symbols have already been standardized for broad fields of application. These have been copied from ANSI Y10.5-1968 [B4] and the same item numbers retained with conversion to all-numeric designation. For example, items 3.14.1, 3.14.2,

¹¹The numbers in brackets preceded by the letter B correspond to those of the bibliography in clause 6.

3.14.3, and 3.14.4 were formerly 3.14a, 3.14b, 3.14c, and 3.14d. Those items of more recent interest in acoustics, including most of table 4, have been copied in part from the corresponding section of ISO 31: 1992 [B14]. Consequently, there are intentional gaps in the item numbers to make it easier to compare ANSI Y10.5-1968 [B4], ANSI Y10.11-1984, and ISO 31: 1992 [B14] with the present standard. A few items not in ANSI Y10.5-1968 [B4] have been added and given numbers.

Tables 6 through 10 contain quantities of interest primarily in acoustics and bear no particular relation to ANSI Y10.5-1968 [B4]. Table 6 has been compared to the section on acoustics of ISO 31: 1992 [B14] to reduce differences between them, but it does not necessarily eliminate these differences completely. The coverage in table 6 is the more extensive.

Quantity symbols and abbreviations are listed alphabetically in tables 11 and 12 for ready reference. Finally, all quantities, together with variants of their names, are listed in table 13.

6. Bibliography

[B1] ANSI S1.1-1994, American National Standard for Acoustical Terminology.

[B2] ANSI S3.14-1977 (Reaff 1986), American National Standard Rating Noise with Respect to Speech Interference.

[B3] ANSI Y10.1-1972 (Reaff 1988), American National Standard Glossary of Terms Concerning Letter Symbols.

[B4] ANSI Y10.5-1968, American National Standard Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.

[B5] ARI 275-1984, Application of Sound Rated Outdoor Unitary Equipment.

[B6] ASHRAE Handbook: Fundamentals, SI Edition, 1993.

[B7] IEC 27-3 (1989), Letter symbols to be used in electrical technology—Part 3: Logarithmic quantities and units.

[B8] IEC 50-801: 1994, International Electrotechnical Vocabulary—Chapter 801: Acoustics and electroacoustics.

[B9] IEEE Std 100-1992, The New IEEE Standard Dictionary of Electrical and Electronics Terms (ANSI).

[B10] IEEE Std 152-1991, IEEE Standard for Audio Program Level Measurement (ANSI).

[B11] IEEE Std 176-1987, IEEE Standard on Piezoelectricity.

[B12] ANSI/IEEE Std 260.1-1993, American National Standard Letter Symbols for Units of Measurement (SI Units, Customary Inch-Pound Units, and Certain Other Units).

[B13] IEEE Std 319-1990, IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature (ANSI).

[B14] ISO 31: 1992, Quantities and units.

NOTE—May also be listed by its separate parts, e.g., Part 7: Acoustics.

- [B15] ISO 532: 1975, Acoustics—Method for calculating loudness level.
- [B16] ISO 717: 1982, Acoustics—Rating of sound insulation in buildings and of building elements.
- [B17] Beranek, Blazier, and Figwer, Journal of the Acoustical Society of America, vol. 50, no. 1223, 1971.
- [B18] Peterson, Handbook of Noise Measurement, 9th ed. GenRad, Inc., 1980.

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
1.1	angle, plane	$\begin{array}{c} \alpha, \ \beta, \ \gamma, \ \theta, \\ \phi, \ \psi \end{array}$	radian, (numeric)	rad	Other Greek letters are per- mitted where no conflict results.
1.2	angle, solid	Ω, (ω)	steradian, (numeric)	sr	
1.3	length	l, L	meter	m	
1.4	breadth, width	b	meter	m	
1.5	height	h	meter	m	
1.6	thickness	<i>d</i> , δ	meter	m	
1.7	radius, distance from source	r, R	meter	m	
1.8	diameter	<i>d</i> , <i>D</i>	meter	m	
1.9	length of path, line seg- ment, distance	S	meter	m	
1.10	wavelength	λ	meter	m	
1.12	circular wave number, angular wave number	k	radian per meter	rad/m	$k = 2\pi/\lambda$
1.13	area	A, (S)	square meter	m ²	
1.14	volume	<i>V</i> , <i>v</i>	cubic meter	m ³	
1.15	time	t	second	s	
1.16	period, time of one cycle	Т	second	S	
1.17	time constant	τ, (Τ)	second	s	
1.18	frequency	f, (v)	hertz	Hz	1 Hz is the frequency of a periodic phenomenon of which the period is 1 s.
1.18.1	bandwidth	В	hertz	Hz	
1.19	speed of rotation, rota- tional frequency	n	revolution per second	r/s	
1.20	angular frequency	ω	radian per second	rad/s	$\omega = 2\pi f$
1.21	angular velocity	ω	radian per second	rad/s	

Table 1—Space and time: symbols for quantities

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
1.23	angular acceleration	α	radian per sec- ond squared	rad/s ²	
1.24	velocity	v	meter per second	m/s	
1.25	speed of sound	c, (c _a)	meter per second	m/s	Not always equal to the phase velocity.
1.25.1	phase velocity	c _φ	meter per second	m/s	
1.25.2	group velocity	cg	meter per second	m/s	
1.26	acceleration (linear)	a	meter per sec- ond squared	m/s ²	
1.27	acceleration of free fall, gravitational acceleration	g	meter per sec- ond squared	m/s ²	Standard value, $g_n =$ 9.80665 m/s ² (exact; see ISO 31-1: 1992 [B14]).
1.28	damping coefficient	δ	neper per second	Np/s	1 Np = 8.686 dB. If $f(t) = A e^{\delta t} \sin (2\pi t / T)$, then δ is the damping coefficient.
1.29	logarithmic decrement	Λ	neper, (numeric)	Np	$\Lambda = T\delta$, where T and δ are as given in the equation for Item 1.28.
1.30	attenuation coefficient	α	neper per meter	Np/m	See Item 6.70.
1.31	phase coefficient	β	radian per meter	rad/m	Same as Item 6.71.
1.32	propagation coefficient	γ	reciprocal meter	m ⁻¹	$\gamma = \alpha + j\beta.$ See Item 6.72.

Table 1—Space and time: symbols for quantities	(continued)
Table 1—Opace and time. Symbols for quantities	(continueu)

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
2.1	mass	m	kilogram	kg	
2.2	(mass) density	ρ	kilogram per cubic meter	kg/m ³	Mass divided by volume.
2.3	momentum	р	kilogram meter per second	kg·m/s	1 kg·m/s = 1 N·s
2.4	moment of inertia	I, J	kilogram meter squared	kg·m ²	
2.5	second (axial) moment of area	I, I _a	meter to the fourth power	m ⁴	Items 2.5 and 2.6 should be distin- guished from Item 2.4. They have often been given the name "moment of inertia."
2.6	second (polar) moment of area	J, I _p	meter to the fourth power	m ⁴	
2.7	force	F	newton	N	
2.8	moment of force	М	newton meter	N∙m	
2.9	torque	T, (M)	newton meter	N∙m	
2.10	pressure	p	pascal	Ра	$1 \text{ Pa} = 1 \text{ N/m}^2$
2.11	normal stress	σ, σ _{ii} , (T _{ii})	pascal	Ра	The reserve symbols in Items 2.11 to 2.16 are recommended for use in the context of piezo- electricity and pieg- zomanetism (magnetostriction).
2.12	shear stress	$\tau, \sigma_{ij}, (\mathbf{T}_{ij}),$ where $i \neq j$	pascal	Ра	
2.13	stress tensor	σ, (T)	pascal	Ра	
2.14	linear strain	$\varepsilon, \varepsilon_{ii}, (\mathbf{S}_{ii})$	(numeric)		
2.15	shear strain	$\gamma, \varepsilon_{ij}, (\mathbf{S}_{ij}),$ where $i \neq j$	(numeric)		
2.16	strain tensor	E, (S)	(numeric)		
2.17	volume strain	θ	(numeric)		See Item 6.67.
2.18	Poisson's ratio	μ, ν	(numeric)		Lateral contraction divided by elongation.

Table 2—Mechanics: symbols for quantities

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
2.19	Young's modulus, modulus of elasticity	$E, (c_{qq})$	pascal	Pa	$E = \sigma/\epsilon$ See remark in Item 2.11.
2.20	shear modulus, modulus of rigidity	$G, (c_{qp})$	pascal	Ра	$G = \tau/\gamma$ See remark in Item 2.11.
2.21	bulk modulus	K	pascal	Ра	$K = -p/\theta$
2.22	work	W	joule	J	
2.23	energy	E, W	joule	J	<i>U</i> is recommended in thermodynamics for internal energy and for blackbody radiation.
2.23.1	potential energy	<i>V</i> , <i>E</i> _P	joule	J	
2.23.2	kinetic energy	<i>T</i> , <i>E</i> _K	joule	J	
2.24	energy (volume) density	w	joule per cubic meter	J/m ³	
2.25	power	Р	watt	W	1 W = 1 J/s
2.26	efficiency	η	(numeric)		

Table 2—Mechanics: symbols for quantities (continued)

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
3.1	absolute temperature, thermodynamic temperature	Τ, (Θ)	kelvin	К	In 1967, the CGPM voted to give the name <i>kelvin</i> to the SI unit of temperature, which was formerly called <i>degree Kelvin</i> , and to assign it the symbol K (without the symbol °).
3.2	temperature, Celsius temperature	t, (θ)	degree Celsius	°C	The symbol °C is printed without space between ° and the letter that follows. The word <i>centigrade</i> has been abandoned as the name of a temperature scale. The degree Celsius is a special name for the kelvin for use with Celsius temperature and temperature intervals.
3.14	specific heat capacity	с	joule per kelvin kilogram	J/(K·kg)	Heat capacity divided by mass.
3.14.1	specific heat capacity at constant pressure	c _p	joule per kelvin kilogram	J/(K·kg)	
3.14.2	specific heat capacity at constant volume	c _v	joule per kelvin kilogram	J/(K·kg)	
3.14.3	ratio of specific heat capacities	γ	(numeric)		$\gamma = c_p / c_v$
3.14.4	heat capacity per unit volume	c _V	joule per kelvin cubic meter	J/(K·m ³)	$c_V = c \cdot \rho$

Table 3—Heat: symbols for quantities

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
4.6	velocity (speed) of electromag- netic waves in vacuum	c, c ₀	meter per second	m/s	$c = 299\ 792\ 458\ m/s$ (exact; see ISO 31-6:1992 [B14]). When it is necessary to make a distinction between phase velocity in a medium and phase velocity in vac- uum, c is used for the former and c_0 for the latter.
4.7	radiant energy	$Q, W, (U, Q_{\rm e})$	joule	J	Energy emitted, transferred or received as radiation.
4.10	radiant power, radiant energy flux	<i>Р</i> , <i>Ф</i> , (<i>Ф</i> _e)	watt	W	
4.13	radiant intensity	<i>I</i> , (<i>I</i> _e)	watt per steradian	W/sr	
4.15	radiant exitance	<i>M</i> , (<i>M</i> _e)	watt per square meter	W/m	Emitted radiant energy flux per unit area; formerly called radiant emittance.
4.16	irradiance	<i>E</i> , (<i>E</i> _e)	watt per square meter	W/m ²	Incident radiant energy flux per unit area.
4.21.1	emissivity	ε	(numeric)		Ratio of radiant exitance of a body to that of a black body at the same temperature.
4.29	luminous intensity	I, (I _V)	candela	cd	The candela is the luminous intensity, in a given direc- tion, of a source that emits monochromatic radiation of frequency 540×10^{12} Hz and that has a radiant inten- sity in that direction of 1/683 W/sr.
4.30	luminous flux	$\Phi, (\Phi_{v})$	lumen	lm	$1 \text{ lm} = 1 \text{ cd} \cdot \text{sr}$
4.32	luminance	$L, (L_{\rm v})$	candela per square meter	cd/m ²	Luminous intensity per unit of projected area.
4.33	luminous exitance	M, (M _v)	lumen per square meter	lm/m ²	Emitted luminous flux per unit area; formerly called luminous emittance.
4.34	illuminance	<i>E</i> , (<i>E</i> _v)	lux	lx	Incident luminous flux per unit area; $1 \text{ lx} = 1 \text{ lm/m}^2$.
4.36.1	luminous efficacy	K	lumen per watt	lm/W	$K = \Phi_{\rm v}/\Phi_{\rm e}$

Table 4—Radiation and light: symbols for quantities

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
4.40.1	spectral absorp- tion factor, spec- tral absorptance	α (λ)	(numeric)		Ratio of absorbed luminous flux to incident luminous flux.
4.40.2	spectral reflec- tion factor, spec- tral reflectance	ρ(λ)	(numeric)		Ratio of reflected luminous flux to incident luminous flux.
4.44	refractive index	n	(numeric)		
4.51	numerical aperture	NA	(numeric)		A characteristic of an opti- cal waveguide in terms of its acceptance of impinging light.

Table 4—Radiation and light: symbols for quantities (continued)

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
5.1	electric charge, quan- tity of electricity	Q	coulomb	С	
5.3	surface density of charge	σ	coulomb per square meter	C/m ²	
5.5	electric field strength	E, (K)	volt per meter	V/m	
5.6	electrostatic potential, potential difference	ν, (φ)	volt	V	
5.8	voltage, electromotive force	V, E, (U)	volt	V	
5.10	electric flux density, (electric) displacement	D	coulomb per square meter	C/m ²	
5.11	permittivity, absolute permittivity, capacitivity	ε	farad per meter	F/m	Of vacuum, ε_{0}
5.12	relative permittivity, dielectric constant, rel- ative capacitivity	<i>Е</i> _г , <i>К</i>	(numeric)		$\varepsilon_{\rm r} = \varepsilon/\varepsilon_{\rm o}$
5.18	(electric) current	Ι	ampere	А	
5.21	magnetic field strength	Н	ampere per meter	A/m	
5.23	magnetomotive force	F, F _m	ampere	А	
5.24	magnetic flux	Φ	weber	Wb	$1 \text{ Wb} = 1 \text{ V} \cdot \text{s}$
5.25	magnetic flux density, magnetic induction	В	tesla	Т	$1 \text{ T} = 1 \text{ Wb/m}^2$
5.26	magnetic flux linkage	Λ	weber	Wb	
5.29	(magnetic) permeabil- ity, absolute permeability	μ	henry per meter	H/m	Of vacuum, μ_0
5.30	relative (magnetic) permeability	μ _r	(numeric)		$\mu_{\rm r} = \mu/\mu_{\rm o}$
5.35	magnetization	М	ampere per meter	A/m	$M = (B/\mu_0) - H$, where $\mu_0 = 4\pi \times 10^{-7}$ H/m is the magnetic constant.
5.38	capacitance	С	farad	F	1 F = 1 C/V
5.40	(self-) inductance	L	henry	Н	

Table 5—Electricity and magnetism: symbols for quantities

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
5.45	number of turns (in a winding)	N, n	(numeric)		
5.46	number of phases	m	(numeric)		
5.47	turns ratio	<i>n</i> , <i>n</i> _*	(numeric)		
5.47.1	transformer ratio	α	(numeric)		Square root of the ratio of the secondary to the primary self- inductance. Where the coeffi- cient of coupling is high, $\alpha = n_*$
5.48	resistance	R	ohm	Ω	
5.49	resistivity, volume resistivity	<i>ρ</i> , <i>ρ</i> _e	ohm meter	Ω.m	
5.50	conductance	G	siemens	S	$G = \operatorname{Re} Y$; the siemens was for- merly called the mho.
5.51	conductivity	γ, σ, σ _e	siemens per meter	S/m	$\gamma = 1/\rho$; the symbol σ is used in field theory, as γ is used there for the propagation coefficient. See remark for Item 5.50.
5.52	reluctance	R, R _m	reciprocal henry	H-1	Magnetic potential difference divided by magnetic flux.
5.53	permeance	P, P _m	henry	Н	$P_{\rm m} = 1/R_{\rm m}$
5.54	impedance	Ζ	ohm	Ω	Z = R + jX
5.55	reactance	X	ohm	Ω	
5.58	quality factor	Q	(numeric)		$Q = 2\pi$ (peak energy stored)/ (energy dissipated per cycle). For a simple reactor, $Q = X /R$.
5.59	admittance	Y	siemens	S	Y = 1/Z = G + jBSee remark for Item 5.50.
5.60	susceptance	В	siemens	S	B = Im YSee remark for Item 5.50.
5.62	active power	Р	watt	W	
5.63	reactive power	<i>Q</i> , (<i>P</i> _{<i>Q</i>})	voltampere, var	VA, var	The special names "var" and symbol "var" are adopted by IEC for the SI-derived unit for reactive power.
5.64	apparent power	$S, (P_S)$	voltampere	VA	S = P + jQ

Table 5—Electricity and magnetism: symbols for quantities (continued)

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
5.65	power factor	F _P	(numeric)		$F_P = \cos \phi = P/S$
5.66	reactive factor	FQ	(numeric)		$F_Q = \sin \phi = Q/S$
5.73	resonance frequency	f _r	hertz	Hz	
5.73.1	antiresonance frequency	f _a	hertz	Hz	
5.74	critical frequency, cutoff frequency	f _c	hertz	Hz	
5.74.1	cutoff frequencies, band limits	f_1, f_2	hertz	Hz	$f_1 < f_2$
5.74.2	(geometric) midband frequency	f _o	hertz	Hz	
5.75	resonance angular frequency	ω _r	radian per second	rad/s	
5.76	critical angular fre- quency, cutoff angular frequency	ω _c	radian per second	rad/s	
5.76.1	cutoff angular frequencies	ω_1, ω_2	radian per second	rad/s	$\omega_1 < \omega_2$
5.76.2	(geometric) midband angular frequency	ω	radian per second	rad/s	
5.77	resonance wavelength	$\lambda_{ m r}$	meter	m	
5.78	critical wavelength, cutoff wavelength	$\lambda_{\rm c}$	meter	m	
5.82	phase angle, phase difference	φ, θ	radian	rad	

Table 5—Electricity and magnetism: symbols for quantities (continued)

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
6.1	static pressure	p _s	pascal	Ра	$1 \text{ Pa} = 1 \text{ N/m}^2 = 10 \ \mu \text{bar}$
6.2	sound pressure	р	pascal	Ра	
6.3	sound pressure spectral density	$p_{\rm f}^2$	pascal squared per hertz	Pa ² /Hz	Also called sound pressure spectrum density.
6.4	spectral sound pressure	<i>P</i> f	pascal per square root of hertz	Pa/Hz ^{1/2}	
6.5	pressure impulse	pI	pascal second	Pa·s	
6.6	pressure impulse spec- tral density, pressure impulse spectrum density	p_{If}^{2}	pascal squared second per hertz	Pa ² s/Hz	This quantity is derived from energy spectral density instead of power spectral density.
6.7	spectral pressure impulse	p_{If}	pascal square root of (second per hertz)	Pa(s/Hz) ^{1/2}	
6.8	linear displacement	$x, \xi_x, (s)$	meter	m	Of a mechanical vibrating system.
6.9	rotational displacement	φ	radian	rad	
6.10	sound particle displacement	ξ	meter	m	For Items 6.10 to 6.18, the x , y , and z components of vector quantities may be designated by appropriate subscripts.
6.11	sound particle displace- ment spectral density	$\xi_{\rm f}^{2}$	meter squared per hertz	m ² /Hz	
6.12	spectral sound particle displacement	ξ _f	meter per square root of hertz	m/Hz ^{1/2}	
6.13	sound particle velocity	и, v	meter per second	m/s	
6.14	sound particle velocity spectral density	$u_{\rm f}^2, v_{\rm f}^2$	(meter per sec- ond) squared per hertz	(m/s) ² /Hz	
6.15	spectral sound particle velocity	<i>u</i> _f , <i>v</i> _f	(meter per sec- ond) per square root of hertz	(m/s)/Hz ^{1/2}	
6.16	sound particle acceleration	α	meter per sec- ond squared	m/s ²	

Table 6—Acoustics: symbols for quantities

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
6.17	sound particle accelera- tion spectral density	$\alpha_{\rm f}^2$	meter squared per (fourth power of second) times hertz	m ² /(s ⁴ Hz)	
6.18	spectral sound particle acceleration	$lpha_{ m f}$	meter per sec- ond squared times square root of hertz	m/(s ² Hz ^{1/2})	
6.19	volume velocity	<i>q</i> , <i>U</i>	cubic meter per second	m ³ /s	
6.20	volume velocity spec- tral density	$q_{\rm f}^{\ 2}, {U_{\rm f}}^2$	meter to sixth power per second squared times hertz	m ⁶ /(s ² Hz)	
6.21	spectral volume velocity	$q_{\mathrm{f}}, U_{\mathrm{f}}$	cubic meter per second times square root of hertz	m ³ /(sHz ^{1/2})	
6.22	volume displacement	<i>V</i> , (Δ <i>V</i>)	cubic meter	m ³	
6.23	strength of a simple source	Q _o	cubic meter per second	m ³ /s	
6.24	velocity potential	φ	square meter per second	m ² /s	
6.25	sound intensity	I, (J)	watt per square meter	W/m ²	
6.26	sound power	P, (W)	watt	W	
6.27	sound energy	Ε	joule	J	Use subscripts P and K to denote potential and kinetic energy. See Items 2.23a and 2.23b.
6.28	sound energy density	w, (e)	joule per cubic meter	J/m ³	
6.29	sound exposure at <i>x</i> dB per halving of duration	E _x	pascal to the $6/x$ power times hour	Pa ^{6/x} h	$E_x = \int_0^t p^{6/x} dt$ The sound pressure may be frequency weighted.
6.30	sound exposure at 3 dB per halving of duration	<i>E</i> , (<i>E</i> ₃)	pascal squared times hour	Pa ² h	1 Pa ² h is the exposure for 8 h at 85 dB re 20 μPa.

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
6.31	sound exposure at 5 dB per halving of duration	$F, (E_5)$	pascal to the 1.2 power times hour	Pa ^{1.2} h	1 Pa ^{1.2} h is the exposure for 8 h at 79 dB re 20 μPa.
6.32	characteristic imped- ance of a medium	$Z_{\rm c},(z)$	pascal second per meter	Pa·s/m	$Z_{\rm c} = \rho {\rm c}$
6.33	specific acoustic impedance	Zs	pascal second per meter	Pa·s/m	$Z_{\rm s} = p/u$
6.34	specific acoustic admittance	Y _s	meter per pascal second	m/(Pa·s)	$Y_{\rm s} = 1/Z_{\rm s}$
6.35	acoustic impedance	Za	pascal second per cubic meter	Pa·s/m ³	$Z_{\rm a} = Z_{\rm s}/A = R_{\rm a} + {\rm j}X_{\rm a}$
6.36	acoustic resistance	R _a	pascal second per cubic meter	Pa·s/m ³	
6.37	acoustic reactance	X _a	pascal second per cubic meter	Pa·s/m ³	$X_{\rm a} = m_{\rm a}\omega - K_{\rm a}/\omega$
6.38	acoustic mass, acoustic inertance	m _a	pascal second squared per cubic meter	Pa·s ² /m ³	$m_{a} = X_{a}/\omega$ 1 Pa·s ² /m ³ = 1 kg/m ⁴
6.39	acoustic stiffness	K _a	pascal per cubic meter	Pa/m ³	$K_{\rm a} = -\omega X_{\rm a}$
6.40	acoustic admittance	Y _a	cubic meter per pascal second	m ³ /(Pa·s)	$Y_{\rm a} = 1/Z_{\rm a} = G_{\rm a} + {\rm j}B_{\rm a}$
6.41	acoustic conductance	G _a	cubic meter per pascal second	m ³ /(Pa·s)	
6.42	acoustic susceptance	Ba	cubic meter per pascal second	m ³ /(Pa·s)	
6.43	acoustic compliance	Ca	cubic meter per pascal	m ³ /Pa	$C_{\rm a} = 1/K_{\rm a}$
6.44	mechanical impedance	Z _m	newton second per meter	N∙s/m	$Z_{\rm m} = AZ_{\rm s} = F/v = R_{\rm m} + jX_{\rm m}$
6.45	mechanical resistance	<i>R</i> _m , (<i>c</i>)	newton second per meter	N·s/m	Also called damping coeffi- cient, but that is deprecated for this purpose. See Item 6.69.
6.46	mechanical reactance	X _m	newton second per meter	N·s/m	$X_{\rm m} = m_{\rm m}\omega - K_{\rm m}/\omega$
6.47	dynamic mass	m _m	kilogram	kg	$m_{\rm m} = X_{\rm m}/\omega$

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
6.48	dynamic stiffness	K _m , k	newton per meter	N/m	$K_{\rm m} = -\omega X_{\rm m}$
6.49	mechanical admittance	Y _m	meter per newton second	m/(N·s)	$Y_{\rm m} = 1/Z_{\rm m} = \nu/F = G_{\rm m} + {\rm j}B_{\rm m}$
6.50	mechanical conductance	G _m	meter per newton second	m/(N·s)	
6.51	mechanical susceptance	B _m	meter per newton second	m/(N·s)	
6.52	mechanical compliance	C _m	meter per newton	m/N	$C_{\rm m} = 1/K_{\rm m}$
6.53	rotational impedance	Z _r	newton meter second per radian	N·m·s/rad	$Z_{\rm r} = T/\omega = R_{\rm r} + {\rm j}X_{\rm r}$
6.54	rotational resistance	<i>R</i> _r	newton meter second per radian	N·m·s/rad	
6.55	rotational reactance	X _r	newton meter second per radian	N·m·s/rad	
6.56	rotational inertance	m _r	kilogram meter squared per radian	kg·m ² /rad	$m_{\rm r} = X_{\rm r}/\omega$
6.57	dynamic torsional stiffness	<i>K</i> _r	newton meter per radian	N∙m/rad	$K_{\rm r} = -\omega X_{\rm r}$
6.58	rotational admittance	Y _r	radian per new- ton meter second	rad/(N·m·s)	$Y_{\rm r} = 1/Z_{\rm r} = G_{\rm r} + {\rm j}B_{\rm r}$
6.59	rotational conductance	G _r	radian per new- ton meter second	rad/(N·m·s)	
6.60	rotational susceptance	B _r	radian per new- ton meter second	rad/(N·m·s)	
6.61	rotational compliance	C _r	radian per new- ton meter	rad/(N·m)	$C_{\rm r} = 1/K_{\rm r}$
6.62	average (mass) density	$ ho_{ m o}$	kilogram per cubic meter	kg/m ³	
6.63	instantaneous density	ρ	kilogram per cubic meter	kg/m ³	
6.64	condensation	S	(numeric)		$s = (\rho - \rho_{\rm o})/\rho_{\rm o}$

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
6.65	parameter of nonlinearity	<i>B</i> / <i>A</i> , Λ	(numeric)		$B/A = (\rho_0/c_0^2).(\partial^2 p/\partial \rho^2)$
6.66	coefficient of nonlinearity	β	(numeric)		$\beta = 1 + B/(2A)$ For gases, $\beta = (1 + \gamma)/2$
6.67	dilatation	θ, (Δ)	(numeric)		$\theta = dV/V$; same as volume strain; see Item 2.17.
6.68	logarithmic decrement	Λ	neper	Np	l Np = 8.686 dB. The bel is the base SI unit. The decibel is a commonly used submultiple.
6.69	damping coefficient, decay rate	δ	neper per second, decibel per second	Np/s dB/s	See Items 6.68 and 6.45. See ISO 31-1992 [B14].
6.70	attenuation coefficient	α	neper per meter decibel per meter	Np/m dB/m	Same as Item 1.30; see Item 6.68. In a plane sound wave traveling along <i>x</i> , the amplitudes of pressure, displacement, and velocity are proportional to $e^{-\alpha x}$, while the energy, power, and intensity are proportional to $e^{-2\alpha x}$.
6.71	phase coefficient	β	radian per meter	rad/m	Same as Item 1.31.
6.72	propagation coefficient	γ	reciprocal meter	m ⁻¹	If α is in nepers per meter, $\gamma = \alpha + j\beta$.
6.73	field quantity dissipa- tion coefficient	ζ	(numeric)		$\zeta = 1/(2Q)$
6.73.1	energy dissipation coefficient	2ζ, (ψ)	(numeric)		The factor 2 is needed because energy dissipation is proportional to the square of field quantity dissipation.
6.74	energy reflection coefficient	ρ	(numeric)		
6.75	amplitude reflection coefficient	r	(numeric)		$r = \rho^{1/2}$
6.76	energy transmission coefficient	τ	(numeric)		$\delta + \rho + \tau = 1$
6.77	amplitude transmission coefficient	t	(numeric)		$t = \tau^{1/2}$
6.78	index of refraction	n, n _{ij}	(numeric)		From medium <i>i</i> to medium <i>j</i> .

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
6.79	absorption coefficient at incidence angle θ	$\alpha_{ heta}$	(numeric)		
6.80	statistical absorption coefficient, random incidence energy absorption coefficient	α	(numeric)		$\alpha + \rho = 1$
6.81	reverberation time	T ₆₀ , T	second	S	For 60 dB decay.
6.82	Sabine absorption	A	metric sabin	Sa	See ANSI S1.1-1994 [B1]. $A = 24$ (ln 10) (dB) $V/(cT_{60})$ 1 Sa = 1 (dB)·m ² . The metric sabin is not an SI unit.
6.83	Sabine absorption coefficient	$a, (\alpha_{Sab})$	metric sabin per square meter	Sa/m ²	
6.84	mean free path	l	meter	m	
6.85	collision frequency	v	reciprocal second	s ⁻¹	v = c/l
6.86	room constant	R	square meter	m ²	$R = \alpha S/(1-\alpha)$
6.87	porosity	Y	(numeric)		Volume of voids per total volume.
6.88	specific flow resistance	R _f	pascal second per meter	Pa·s/m	
6.89	flow resistivity	σ	pascal second per square meter	Pa·s/m ²	Flow resistance per unit length.
6.90	flare coefficient of a horn	m	reciprocal meter	m ⁻¹	
6.91	beamwidth at -3 dB	$\theta_3, \Delta \theta_3$	radian, degree	rad °	
6.92	beamwidth at -6 dB	$\theta_6, \Delta \theta_6$	radian, degree	rad °	
6.93	beamwidth at -10 dB	$\theta_{10}, \Delta \theta_{10}$	radian, degree	rad °	
6.94	beamwidth between first nulls	$ heta_{\infty}, \Delta heta_{\infty}$	radian, degree	rad °	
6.95	relative field quantity response	Γ	(numeric)		Ratio of response at an angle to response on speci- fied axis.

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
6.96	angular deviation loss	Ν _δ , Ν _{θφ}	decibel	dB	$N_{\delta} = 20 \log \Gamma$ See Items 6.68 and 6.69.
6.97	transmitter deviation loss	ΝδΓ	decibel	dB	
6.98	receiver deviation loss	NoR	decibel	dB	
6.99	directivity factor	γ	(numeric)		$\gamma = \frac{4\pi}{\int\limits_{4\pi} \Gamma^2 d\Omega}$
6.100	directivity index	N _{DI}	decibel	dB	$N_{\rm DI} = 10 \log \gamma$
6.101	reverberation factor	η	(numeric)		$\eta = \frac{4\pi}{\int\limits_{4\pi} \Gamma^4 d\Omega}$
6.102	reverberation index	N _{RI}	decibel	dB	$N_{\rm RI} = 10 \log \eta$
6.103	array gain	N _{AG}	decibel	dB	
6.104	Mach number	ε, Μ	(numeric)		$\varepsilon = v/c$

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
7.1	reciprocity parameter for spherical waves	J	watt per pascal squared	W/Pa ²	$J = 2d/(\rho f)$
7.2	reciprocity parameter for cylindrical waves	J _c	watt per pascal squared	W/Pa ²	
7.3	reciprocity parameter for plane waves	J _p	watt per pascal squared	W/Pa ²	
7.4	reciprocity parameter for diffuse sound	J _{df}	watt per pascal squared	W/Pa ²	
7.5	transfer impedance of projector and hydrophone	Z _{ph}	ohm	Ω	
7.6	electrical impedance of transducer in vacuo	Z _f , Z _{ef}	ohm	Ω	
7.7	electrical admittance of transducer in vacuo	Y _f , Y _{ef}	siemens	S	
7.8	electrical impedance of clamped transducer	$Z_{\rm c}, Z_{\rm ec}$	ohm	Ω	
7.9	electrical admittance of clamped transducer	$Y_{\rm c}, Y_{\rm ec}$	siemens	S	
7.10	motional impedance	Z _m , Z _{em}	ohm	Ω	
7.11	motional admittance	$Y_{\rm m}, Y_{\rm em}$	siemens	S	
7.12	general symbol for response of transducer	$T_{yx}, M_{yx}, (S_x, M_y)$	various		y is related to the output and x to the input. T_{yx} is used primarily for couplers and M_{yx} for sound fields. f and d may be used as additional subscripts to indicate free-field and diffuse-field conditions respectively. S is used for emission and M for reception in couplers.
7.13	pressure response in coupler to voltage	$T_{pU}, (S_U)$	pascal per volt	Pa/V	
7.14	pressure response in sound field to voltage	M _{pU}	pascal meter per volt	Pa·m/V	
7.15	particle velocity response in sound field to voltage	M _{vU}	square meter per volt second	m²/(V·s)	

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
7.16	pressure response in coupler to current	$T_{pI}, (S_I)$	pascal per ampere	Pa/A	
7.17	pressure response in sound field to current	M _{pI}	pascal meter per ampere	Pa·m/A	
7.18	particle velocity response in sound field to current	M _{vI}	square meter per ampere second	m ² /(A·s)	
7.19	pressure response in coupler to power	T_{pP} , (S_P)	pascal per square root of watt	Pa/W ^{1/2}	
7.20	pressure response in sound field to power	M _{pP}	pascal meter per square root of watt	Pa·m/W ^{1/2}	
7.21	particle velocity response in sound field to power	M _{vP}	square meter per second times square root of watt	m ² /(W ^{1/2} s)	
7.22	open-circuit voltage response to pressure in coupler	$T_{Up}, (M_U)$	volt per pascal	V/Pa	
7.23	open-circuit voltage response to pressure in sound field	M _{Up}	volt per pascal	V/Pa	
7.24	open-circuit voltage response to particle velocity in sound field	M _{Uv}	volt second per meter	V·s/m	
7.25	short-circuit current response to pressure in coupler	$T_{Ip}, (M_I)$	ampere per pascal	A/Pa	
7.26	short-circuit current response to pressure in sound field	M _{Ip}	ampere per pascal	A/Pa	
7.27	short-circuit current response to particle velocity in sound field	M _{Iv}	ampere second per meter	A·s/m	
7.28	power response to pres- sure in coupler	$T_{Pp}, (M_P)$	square root of watt per pascal	W ^{1/2} /Pa	
7.29	power response to pres- sure in sound field	M _{Pp}	square root of watt per pascal	W ^{1/2} /Pa	

Table 7—Electroacoustics: symbols for quantities (continued)

Item	Quantity	Quantity symbol	Unit based on international system	Unit symbol	Remarks
7.30	power response to par- ticle velocity in sound field	M _{Pv}	second square root of watt per meter	W ^{1/2} s/m	

Table 7—Electroacoustics: symbols for quantities (continued)

NOTE—Letter symbols for piezoelectric constants are given in IEEE Std 176-1987 [B11]. Letter symbols for piezomagnetic (magnetostrictive) constants are given in IEEE Std 319-1990 [B13].

Item	Quantity	Abbreviation	Quantity symbol	Unit symbol	Remarks
8.1	source level	SL	L _S	dB	Of a projector.
8.2	source spectrum level		L _{Sf}	dB	
8.3	sonar dome loss		ND	dB	
8.4	incident sound pres- sure level of signal	IL	Li	dB	
8.5	echo level	EL	L _e	dB	
8.6	incident sound pres- sure spectrum level of signal		L _{if}	dB	
8.7	sound pressure level of noise, self-noise level	NL	$L_{\rm N}, (L_{\rm B})$	dB	Use subscripts to denote noise components.
8.8	sound pressure spec- trum level of noise		L _{Nf}	dB	
8.9	bandwidth level correction		N _{BW}	dB	
8.10	spreading loss		N _{spr}	dB	
8.11	attenuation loss		N _{attn}	dB	
8.12	(one-way) propagation loss, transmission loss in water	TL	N _W	dB	$N_{\rm W} = N_{\rm spr} + N_{\rm attn}$
8.13	multiple ray path gain, summation gain		N _S	dB	
8.14	target strength	TS	N _{TS}	dB	
8.15	reverberation level	RL	L _R	dB	
8.16	reverberation strength	RS	N _{RS}	dB	
8.17	wake strength	WS	N _{WS}	dB	
8.18	signal-to-noise differ- ential, signal differential		$\Delta L_{\rm S/N}$	dB	
8.19	detection threshold	DT	N _{DT}	dB	$N_{\rm DT} = -N_{\rm p} + N_{\rm T} + N_{\rm SD}$
8.20	signal processing gain		N _p	dB	
8.21	thresholding loss		N _T	dB	

Table 8—Underwater sound: abbreviations and symbols for quantities

Item	Quantity	Abbreviation	Quantity symbol	Unit symbol	Remarks
8.22	signal differential for recognition		N _{SD}	dB	
8.23	minimum detectable signal level	MDS	L _{MD}	dB	
8.24	signal excess	SE	N _{SE}	dB	$N_{\rm SE} = L_{\rm i} - L_{\rm MD}$
8.25	design margin		N _M	dB	Margin for reliable operation.
8.26	figure of merit	FOM	N _{FM}	dB	

Table 8—Underwater sound: abbreviations and symbols for quantities (continued)

Item	Quantity	Abbreviation	Quantity symbol	Unit symbol	Remarks
9.1	sound pressure level in a stated frequency band	SPL	L _p	dB	The symbol <i>N</i> for sound pressure level is deprecated.
9.2	fast A-weighted sound (pressure) level	FA	L _{AF}	dB	
9.3	slow A-weighted sound (pressure) level	SA	L _{AS}	dB	
9.4	fast B-weighted sound (pressure) level	FB	L _{BF}	dB	
9.5	slow B-weighted sound (pressure) level	SB	L _{BS}	dB	
9.6	fast C-weighted sound (pressure) level	FC	L _{CF}	dB	
9.7	slow C-weighted sound (pressure) level	SC	L _{CS}	dB	
9.8	fast D-weighted sound (pressure) level	FD	L _{DF}	dB	
9.9	slow D-weighted sound (pressure) level	SD	L _{DS}	dB	
9.10	octave-band sound pressure level	OBSPL	L _{1/1}	dB	
9.11	one-third-octave-band sound (pressure) level	TOBSPL	L _{1/3}	dB	
9.11.1	band pressure level	BSPL	L _{p b}	dB	Defined in ANSI S1.1-1994 [B1], Item 4.09. When band- width equals 1 Hz, also called spectrum level.
9.12	sound power level	PWL	$L_{P}, (L_{W})$	dB	
9.13	A-weighted sound power level	APWL	$L_{PA}, (L_WA)$	dB	Substitute B, C, D, etc. to denote other weightings.
9.14	product noise rating, hemispherical source sound level	PNR		dB	Space average sound level at 1 m.
9.15	sound pressure spec- trum level, sound pres- sure spectral level	PSL	L _{ps}	dB	For a bandwidth of 1 Hz, as defined in IEEE Std 100-1992 [B9].

-

Item	Quantity	Abbreviation	Quantity symbol	Unit symbol	Remarks
9.15.1	sound pressure spec- trum density level, sound pressure spectral density level		L _{p ds}	dB	In the limit, as the bandwidth approaches zero, as defined in ANSI S1.1-1994 [B1], Item 4.10, and in IEC 50-801: 1994 [B8], entry 801-22-13.
9.16	impulse A-weighted sound level	IAL	L _{AI}	dB	Substitute B, C, D, etc. to denote other weightings.
9.17	time average A- weighted sound level	TAL	L _{AT}	dB	$L_{\text{A}T} = 10 \log [\text{E} / (p_0^2 T)]$ where $p_0 = 20 \mu\text{Pa}.$
9.17.1	time interval equiva- lent continuous sound level	TAL	L _{AeqT}	dB	Same as time average A- weighted sound level.
9.18	hourly average sound level	1HL	L _{1h}	dB	Also called 1 h equivalent con- tinuous sound level. See ANSI S1.1-1994 [B1], Item 4.15.
9.19	8-h average sound level	8HL	L _{8h}	dB	
9.19.1	8-h average A-weighted sound level	8HAL	L _{A8h}	dB	Substitute B, C, D, etc. to denote other weightings.
9.20	day average sound level	DL	L _d	dB	0700–2200 h See ANSI S1.1-1994 [B1], Item 4.16.
9.21	daytime average sound level	DTL	L _{d12}	dB	0700–1900 h
9.22	evening average sound level	EL	L _{ev}	dB	1900–2200 h
9.23	night average sound level	NL	L _n	dB	0000–0700 h and 2200–2400 h See ANSI S1.1-1994 [B1], Item 4.17.
9.24	day-night average sound level	DNL	L _{dn}	dB	24 h average after 10 dB added to $L_{\rm n}$. See ANSI S1.1-1994 [B1], Item 4.18.
9.25	community noise equivalent level	CNEL	L _{den}	dB	24 h average after 5 dB added to L_{ev} and 10 dB to L_n . See ANSI S1.1-1994 [B1], Item 4.19.
9.26	A-weighted sound exposure level	ASEL, SEL	L _{AE}	dB	The level of <i>E</i> (see Item 6.30) re $(20 \ \mu Pa)^2$ and 1 s. Substi- tute B, C, D, etc. to denote other weightings. See ANSI S1.1-1994 [B1], Item 4.21.

Item	Quantity	Abbreviation	Quantity symbol	Unit symbol	Remarks
9.27	fast, A-weighted sound level exceeded 10% of time		<i>L</i> ₁₀	dB	Other exceeded percentiles are similarly indicated.
9.28	noise pollution level	NPL	L _{NP}	dB	$L_{\rm NP} = L_{\rm AeqT} + 2.56 \ \sigma$ The constant 2.56 is subject to revision. σ = standard deviation.
9.29	maximum A-weighted sound level	MXAL	L _{Amax}	dB	Greatest fast, A-weighted sound level during an event, unless other time and fre- quency weightings are indi- cated by appropriate subscripts. See ANSI S1.1- 1994 [B1], Item 4.21.
9.30	peak A-weighted sound level	PKAL	L _{Apk}	dB	Greatest instantaneous, A- weighted sound level, unless other time and frequency weightings are indicated by appropriate subscripts. See ANSI S1.1-1994 [B1], Item 4.19.
9.31	noise and number index	NNI		dB	$L_{\text{PNmax}} + 15 \log n - 80$ n = number of audible events.
9.32	traffic noise index	TNI		dB	$L_{90} + 4 \left(L_{10} - L_{90} \right) -30$
9.33	noise criterion level	NC		dB	See ASHRAE Handbook: Fun- damentals, SI Edition [B6].
9.33.1	balanced noise criterion	BNC		dB	
9.33.2	room criterion	RC		dB	
9.33.3	noise rating	NR		dB	See Peterson, <i>Handbook of</i> <i>Noise Measurement</i> , 9th ed., paragraph 4.11 [B18].
9.34	preferred frequency noise criterion level	PNC		dB	See Beranek, Blazier, and Fig- wer [B17].
9.35	rating sound level		L _r	dB	24 h average sound level plus any correction for tone or impulse.
9.36	ARI sound rating number	SRN		3.3 dB	Equal to 0.4 plus 0.30 times A- weighted sound level at 10 ft (3.048 m). (See ARI Std 275- 1984 [B5].)
9.37	ARI sound level number	SLN		3.3 dB	Such use of "sound level" is deprecated.

Item	Quantity	Abbreviation	Quantity symbol	Unit symbol	Remarks
9.38	sound transmission loss, sound insulation (of a partition)	TL	R	dB	See ANSI S1.1-1994 [B1], Item 11.43.
9.39	noise reduction	NR, (D)	D_f	dB	Quantity is also called "level difference" and "sound isola- tion between rooms." See ANSI S1.1-1994 [B1], Item 11.41.
9.40	level reduction (by a barrier)	LR		dB	
9.41	sound level difference	SLD	D _A	dB	See ANSI S1.1-1994 [B1], Item 11.41.
9.42	field transmission loss (of a partition)	FTL		dB	
9.43	sound transmission class (of a partition)	STC		dB	See ANSI S1.1-1994 [B1], Item 11.45.
9.44	field sound transmis- sion class (of a partition)	FSTC		dB	
9.45	airborne sound insula- tion (of a partition)		Ia	dB	See ISO 717: 1982 [B16].
9.46	noise isolation class (between rooms)	NIC		dB	See ANSI S1.1-1994 [B1], Item 11.47.
9.47	normalized noise isola- tion class (between rooms)	NNIC		dB	Normalized to $T_{60} = 0.5$ s. See ANSI S1.1-1994 [B1], Item 11.18.
9.48	airborne sound insula- tion margin		M _a	dB	$M_{\rm a} = I_{\rm a} - 52$
9.49	impact-sound pressure level		L _N	dB	See ANSI S1.1-1994 [B1], Item 11.51.
9.49.1	normalized impact- sound pressure level		L _{Nn}	dB	See ANSI S1.1-1994 [B1], Item 11.52.
9.50	impact isolation class	IIC		dB	115 dB minus normalized octave-band impact-sound pressure level at 500 Hz.
9.50.1	impact insulation class	IIC		dB	100 dB minus normalized impact-sound index.
9.51	impact-sound index		Ii	dB	See ISO 717: 1982 [B16].

Item	Quantity	Abbreviation	Quantity symbol	Unit symbol	Remarks
9.52	impact protection margin		M _i	dB	$M_{\rm i} = 65 - L_{\rm 1}$
9.53	vibratory acceleration level	VAL	L _a	dB	
9.53.1	vibratory jerk level	VJL	L _j	dB	
9.54	vibratory velocity level	VVL	L _v	dB	
9.55	vibratory displacement level	VDL	L _d	dB	
9.56	vibratory force level	VFL	L_F	dB	See ANSI S1.1-1994 [B1], Item 4.25.
9.57	sound intensity level	IL	L _I	dB	See ANSI S1.1-1994 [B1], Item 4.24.
9.58	sound energy density level		L_w	dB	
9.59	sound energy level		L _E	dB	
9.60	volume of an electrical audio program			vu	1 vu = 1 dB To be used only with complex waves when measured by a standard volume indicator (see IEEE Std 152-1991 [B10]).
9.61	frequency level		N		See ANSI S1.1-1994 [B1], Item 4.05.

Item	Quantity	Abbreviation	Quantity symbol	Unit symbol	Remarks
10.1	judged loudness		λ	sone	One sone is the loudness of a pure tone presented frontally as a plane wave of 1000 Hz and a sound pressure level of 40 dB re 20 μ Pa. See ISO 31-7: 1992 [B14].
10.2	judged loudness level		L_{λ}	phon	See ANSI S1.1-1994 [B1], Item 12.05. $L_{\lambda} = L_p$ of equally loud 1 kHz tone fron- tally presented. Also see ISO 31-7: 1992 [B14].
10.3	calculated loudness		N	sone	
10.4	calculated loudness level	LL	L_N	phon	See ISO 532: 1975 [B15]. Also, see ANSI S1.1-1994 [B1], Item 12.06.
10.5	noisiness		n	noy	See ANSI S1.1-1994 [B1], Items 12.12 and 12.13.
10.6	perceived noise level	PNL	L _{PN}	dB	
10.7	maximum perceived noise level	MXPNL	L _{PNmax}	dB	
10.8	tone-corrected per- ceived noise level	TPNL	L _{PNT}	dB	
10.9	maximum tone-cor- rected perceived noise level	MXTPNL	L _{PNTmax}	dB	Calculated from maximum band levels during flyover.
10.10	effective perceived noise level	EPNL	L _{PNE}	dB	$L_{\text{PNE}} = \frac{10 \log (1/T_0) \cdot \int_0^T 10^{\frac{L_{\text{PN}}}{10}} dt}{10 \text{ of } t}$ where $T_0 = 10$ s, and time T includes all significant sound.
10.11	equivalent continuous perceived noise level	QPNL	L _{PNeq}	dB	$L_{\text{PNeq}} = \frac{10 \log (1/T_{\text{o}}) \cdot \int_{0}^{T} 10^{\frac{L_{\text{PN}}}{10}} dt}{10 \log (1/T_{\text{o}}) \cdot \int_{0}^{T} 10^{\frac{L_{\text{PN}}}{10}} dt}$
10.12	weighted equivalent continuous perceived noise level	WEPNL		dB	QPNL after 10 dB added to levels from 2200–0700 h.

Table 10—Psychoacoustics: abbreviations and symbols for quantities

Item	Quantity	Abbreviation	Quantity symbol	Unit symbol	Remarks
10.13	noise exposure forecast (aircraft)	NEF		dB	$\begin{array}{l} L_{\rm PNE} + 10 \log (N_{\rm d} + 17 N_{\rm n}) - \\ 88 \\ N_{\rm d} = {\rm operations} 0700 - 2200 {\rm h} \\ N_{\rm n} = {\rm operations} 2200 - 0700 {\rm h} \end{array}$
10.14	composite noise rating (aircraft)	CNR		dB	$L_{\rm PNmax} + 10 \log (N_{\rm d} + 17 N_{\rm n}) - 12$
10.15	speech interference level	SIL		dB	Mean of octave-band levels 600–1200 Hz, 1200–2400 Hz, and 2400–4800 Hz.
10.16	preferred frequency speech interference level	PSIL		dB	Mean of octave-band levels centered on 0.5 kHz, 1 kHz, and 2 kHz.
10.17	speech interference level defined by ANSI S3.14-1977 [B2]	SIL (0.5–4)		dB	Mean of octave-band levels centered on 0.5 kHz, 1kHz, 2 kHz, and 4 kHz.
10.18	speech intelligibility, articulation	SI	Ι	%	Percentage of speech ele- ments understood correctly.
10.19	articulation index	AI	(numeric)		Speech level minus noise level, divided by 30 dB.
10.20	hearing level, (hearing loss)	HL		dB	
10.21	noise-induced hearing loss	NIHL		dB	
10.22	noise-induced perma- nent threshold shift	NIPTS		dB	
10.23	temporary threshold shift 2 min after cessa- tion of noise	TTS2		dB	
10.24	effective damage risk level	EDRL		dB	
10.25	composite damage risk	CDR		dB	

Table 10—Psychoacoustics: abbreviations and symbols for quantities (continued)

Symbol	Item	Quantity
а	1.26	linear acceleration
	6.83	Sabine absorption coefficient
Α	1.13	area
	6.82	Sabine absorption
b	1.4	breadth, width
В	1.18.1	bandwidth
	5.25	magnetic flux density, magnetic induction
	5.60	susceptance
B _a	6.42	acoustic susceptance
B _m	6.51	mechanical susceptance
B _r	6.60	rotational susceptance
B/A	6.65	parameter of nonlinearity
с	1.25	speed of sound
	3.14	specific heat capacity
	4.6	velocity (speed) of elec- tromagnetic waves in vacuum
	6.45	mechanical resistance
c _a	1.25	speed of sound
Cg	1.25.2	group velocity
c _p	3.14.1	specific heat capacity at constant pressure
c _{qp}	2.20	shear modulus, modulus of rigidity
C _{qq}	2.19	Young's modulus, modu- lus of elasticity
C _V	3.14.2	specific heat capacity at constant volume
c _V	3.14.4	heat capacity per unit volume

Table 11—Alphabetical list of quantity symbols

Symbol	Item	Quantity
c _φ	1.25.1	phase velocity
C ₀	4.6	velocity (speed) of elec- tromagneticwaves in vacuum
С	5.38	capacitance
Ca	6.43	acoustic compliance
C _m	6.52	mechanical compliance
C _r	6.61	rotational compliance
d	1.6	thickness
	1.8	diameter
D	1.8	diameter
	5.10	electric flux density, elec- tric displacement
D _A	9.41	sound level difference
D_f	9.39	noise reduction
е	6.28	sound energy density
Ε	2.19	Young's modulus, modu- lus of elasticity
	2.23	energy
	4.16	irradiance
	4.34	illuminance
	5.5	electric field strength
	5.8	voltage, electromotive force
	6.27	sound energy
	6.30	sound exposure at 3 dB per halving of duration
Ee	4.16	irradiance
E _K	2.23.2	kinetic energy
E _P	2.23.1	potential energy

Symbol	Item	Quantity
$E_{\rm v}$	4.34	illuminance
E_x	6.29	sound exposure at <i>x</i> dB per halving of duration
<i>E</i> ₃	6.30	sound exposure at 3 dB per halving of duration
<i>E</i> ₅	6.30	sound exposure at 5 dB per halving of duration
f	1.18	frequency
f _a	5.73.1	antiresonance frequency
f _c	5.74	critical frequency, cutoff frequency
f _r	5.73	resonance frequency
$f_{\rm o}$	5.74.2	midband frequency
f_1, f_2	5.74.1	cutoff frequencies, band limits
F	2.7	force
	5.23	magnetomotive force
	6.31	sound exposure at 5 dB per halving of duration
F _m	5.23	magnetomotive force
F_P	5.65	power factor
F_Q	5.66	reactive factor
<i>g</i> , <i>g</i> _n	1.27	acceleration of free fall, gravitational aceleration
G	2.20	shear modulus, modulus of rigidity
	5.50	conductance
Ga	6.41	acoustic conductance
G _m	6.50	mechanical conductance
G _r	6.59	rotational conductance
h	1.5	height

Symbol	Item	Quantity
Н	5.21	magnetic field strength
Ι	2.4	moment of inertia
	2.5	second (axial) moment of area
	4.13	radiant intensity
	4.29	luminous intensity
	5.18	electric current
	6.25	sound intensity
	10.18	speech intelligibility, articulation
I _a	2.5	second (axial) moment of area
	9.45	airborne sound insulation
I _e	4.13	radiant intensity
Ii	9.51	impact sound index
Ip	2.6	second (polar) moment of area
$I_{\rm v}$	4.29	luminous intensity
J	2.4	moment of inertia
	2.6	second (polar) moment of area
	6.25	sound intensity
	7.1	reciprocity parameter for spherical waves
J _c	7.2	reciprocity parameter for cylindrical waves
$J_{ m df}$	7.4	reciprocity parameter for diffuse sound
J _p	7.3	reciprocity parameter for plane waves
k	1.12	circular wave number, angular wave number

Symbol	Item	Quantity
	6.48	dynamic stiffness
K	2.21	bulk modulus
	4.36.1	luminous efficacy
	5.5	electric field strength
K _a	6.39	acoustic stiffness
K _m	6.48	dynamic stiffness
K _r	6.57	dynamic torsional stiffness
l	1.3	length
	6.84	mean free path
L	1.3	length
	4.32	luminance
	5.40	self-inductance
L _a	9.53	vibratory acceleration level
L _{AE}	9.26	A-weighted sound expo- sure level
L _{AF}	9.2	fast A-weighted sound pressure level
L _{AI}	9.16	impulse A-weighted sound level
L _{Amax}	9.29	maximum A-weighted sound level
L _{Apk}	9.30	peak A-weighted sound level
L _{AS}	9.3	slow A-weighted sound pressure level
L _{AT}	9.17	time average A-weighted- sound level
L _{AeqT}	9.17.1	time interval equivalent continuous sound level
L _{A8h}	9.19.1	8-h average A-weighted sound level

Symbol	Item	Quantity
L _B	8.7	sound pressure level of noise, self-noise level
L _{BF}	9.4	fast B-weighted sound pressure level
L _{BS}	9.5	slow B-weighted sound pressure level
L _{CF}	9.6	fast C-weighted sound pressure level
L _{CS}	9.7	slow C-weighted sound pressure level
L _d	9.20	day average sound level
L _d	9.55	vibratory displacement level
L _{den}	9.25	community noise equiva- lent level
L _{DF}	9.8	fast D-weighted sound pressure level
L _{dn}	9.24	day-night average sound level
L _{DS}	9.9	slow D-weighted sound pressure level
L _{d12}	9.21	daytime average sound level
L _e	8.5	echo level
L_E	9.59	sound energy level
L _{ev}	9.22	evening average sound level
L_F	9.56	vibratory force level
Li	8.4	incident sound pressure level of signal
L _I	9.57	sound intensity level
$L_{ m if}$	8.6	incident sound pressure spectrum level of signal
L _j	9.53.1	vibratory jerk level

Symbol	Item	Quantity
L _{MD}	8.23	minimum detectable sig- nal level
L _n	9.23	night average sound level
L _N	8.7	sound pressure level of noise, self-noise level
	9.49	impact-sound pressure level
L_N	10.4	calculated loudness level
$L_{ m Nf}$	8.8	sound pressure spectrum level of noise
L _{Nn}	9.49.1	normalized impact-sound pressure level
L _{NP}	9.28	noise pollution level
L _p	9.1	sound pressure level in a stated frequency band
L_P	9.12	sound power level
L _{PA}	9.13	A-weighted sound power level
L _{pb}	9.11.1	band pressure level
$L_{\rm PN}$	10.6	perceived noise level
L _{PNE}	10.10	effective perceived noise level
L _{PNeq}	10.11	equivalent continuous per- ceived noise level
L _{PNmax}	10.7	maximum perceived noise level
L _{PNT}	10.8	tone-corrected perceived noise level
L _{PNTmax}	10.9	maximum tone-corrected perceived noise level
L _{ps}	9.15	sound pressure spectrum level
L _r	9.35	sound rating level
L _R	8.15	reverberation level

Symbol	Item	Quantity
L _S	8.1	source level
L _{Sf}	8.2	source spectrum level
L _v	9.54	vibratory velocity level
$L_{\rm v}$	4.32	luminance
L_W	9.12	sound power level
L_w	9.58	sound energy density level
L _{WA}	9.13	A-weighted sound power level
L_{λ}	10.2	judged loudness level
L _{1h}	9.18	hourly average sound level
L _{1/1}	9.10	octave-band sound pres- sure level
L _{1/3}	9.11	one-third-octave-band sound pressure level
L _{8h}	9.19	8-h average sound level
L ₁₀	9.27	fast A-weighted sound level exceeded 10% of time
m	2.1	mass
	5.46	number of phases
	6.90	flare coefficient of a horn
m _a	6.38	acoustic mass, acoustic inertance
m _m	6.47	dynamic mass
m _r	6.56	rotational inertance
М	2.8	moment of a force
	2.9	torque
	4.15	radiant exitance
	4.33	luminous exitance
	5.35	magnetization

Symbol	Item	Quantity
	6.104	Mach number
M _a	9.48	airborne sound insulation margin
M _e	4.15	radiant exitance
M _i	9.52	impact protection margin
M _I	7.25	short-circuit current response to pressure in coupler
M _{Ip}	7.26	short-circuit current response to pressure in sound field
M _{Iv}	7.27	short-circuit current response to particle veloc- ity in sound field
M _P	7.28	power response to pres- sure in coupler
M _{pI}	7.17	pressure response in sound field to current
M _{pP}	7.20	pressure response in sound field to power
M _{Pp}	7.29	power response to pres- sure in sound field
M_{pU}	7.14	pressure response in sound field to voltage
M _{Pv}	7.30	power response to particle velocity in sound field
M _U	7.22	open-circuit voltage response to pressure in coupler
M _{Up}	7.23	open-circuit voltage response to pressure in sound field
M _{Uv}	7.24	open-circuit voltage response to particle veloc- ity in sound field
M _v	4.33	luminous exitance
M _{vI}	7.18	particle velocity response in sound field to current

Symbol	Item	Quantity
M _{vP}	7.21	particle velocity response in sound field to power
M _{vU}	7.15	particle velocity response in sound field to voltage
M_y, M_{yx}	7.12	general symbols for response of transducer
n	1.19	speed of rotation, rota- tional frequency
	4.44	refractive index
	5.45	number of turns
	5.47	turns ratio
	6.78	index of refraction
	10.5	noisiness
n _{ij}	6.78	index of refraction
<i>n</i> *	5.47	turns ratio
Ν	5.45	number of turns
	9.61	frequency level
	10.3	calculated loudness
N _{AG}	6.103	array gain
N _{attn}	8.11	attenuation loss
$N_{\rm BW}$	8.9	bandwidth level correction
N _D	8.3	sonar dome loss
N _{DI}	6.100	directivity index
N _{DT}	8.19	detection threshold
N _{FM}	8.26	figure of merit
N _M	8.25	design margin
N _p	8.20	signal processing gain
N _{RI}	6.102	reverberation index
N _{RS}	8.16	reverberation strength

Table 11—Alphabetical list of quantity symbols (continued)

Symbol	Item	Quantity
N _S	8.13	multiple ray path gain, summation gain
N _{SD}	8.22	signal differential for recognition
N _{SE}	8.24	signal excess
N _{spr}	8.10	spreading loss
N _T	8.21	thresholding loss
N _{TS}	8.14	target strength
$N_{ m W}$	8.12	propagation loss, trans- mission loss
N _{WS}	8.17	wake strength
N _δ	6.96	angular deviation loss
NoR	6.98	receiver deviation loss
N _{ðT}	6.97	transmitter deviation loss
$N_{\theta\phi}$	6.96	angular deviation loss
NA	4.51	numerical aperture
р	2.3	momentum
	2.10	pressure
	6.2	sound pressure
$p_{\rm f}$	6.4	spectral sound pressure
$p_{\rm f}^2$	6.3	sound pressure spectral density
p_{I}	6.5	pressure impulse
p_{If}	6.7	spectral pressure impulse
p_{If}^{2}	6.6	pressure impulse spectral density, pressure impulse spectrum density
p _s	6.1	static pressure
Р	2.25	power
	4.10	radiant power, radiant energy flux

Symbol	Item	Quantity
	5.53	permeance
	5.62	active power
	6.26	sound power
P _m	5.53	permeance
P_Q	5.63	reactive power
P_S	5.64	apparent power
<i>q</i>	6.19	volume velocity
q_{f}	6.21	spectral volume velocity
$q_{\rm f}^2$	6.20	volume velocity spectral density
Q	4.7	radiant energy
	5.1	electric charge, quantity of electricity
	5.58	quality factor
	5.63	reactive power
Q _e	4.7	radiant energy
Qo	6.23	strength of a simple source
r	1.7	radius, distance from source
R	1.7	radius, distance from source
	5.48	electrical resistance
	5.52	reluctance
	6.86	room constant
	9.38	sound transmission loss, sound insulation (of a partition)
R _a	6.36	acoustic resistance
R _f	6.88	specific flow resistance
R _m	5.52	reluctance

Symbol	Item	Quantity
	6.45	mechanical resistance
R _r	6.54	rotational resistance
S	1.9	length of path, line seg- ment distance
	6.8	linear displacement
	6.64	condensation
S	1.13	area
	5.64	apparent power
S	2.16	strain tensor
S _I	7.16	pressure response in cou- pler to current
S _{ii}	2.14	linear strain
S _{ij}	2.15	shear strain
S _P	7.19	pressure response in cou- pler to power
S _U	7.13	pressure response in cou- pler to voltage
S _x	7.12	general symbol for response of transducer
t	1.15	time
	3.2	temperature, Celsius temperature
	6.77	amplitude transmission coefficient
Т	1.16	period, time of one cycle
	1.17	time constant
	2.9	torque
	2.23.2	kinetic energy
	3.1	absolute temperature, thermodynamic temperature
	6.81	reverberation time

Table 11—Alphabetical list of quantity symbols (continued)

Symbol	Item	Quantity
Т	2.13	stress tensor
T _{ii}	2.11	normal stress
T _{ij}	2.12	shear stress
T _{Ip}	7.25	short-circuit current response to pressure in coupler
T _{pI}	7.16	pressure response in cou- pler to current
T_{pP}	7.19	pressure response in cou- pler to power
T _{Pp}	7.28	power response to pres- sure in coupler
T_{pU}	7.13	pressure response in cou- pler to voltage
T _{Up}	7.22	open-circuit voltage response to pressure in coupler
T _{yx}	7.12	general symbol for response of transducer
T ₆₀	6.81	reverberation time
и	6.13	sound particle velocity
<i>u</i> _f	6.15	spectral sound particle velocity
$u_{\rm f}^2$	6.14	sound particle velocity spectral density
U	4.7	radiant energy
	5.8	voltage, electromotive force
	6.19	volume velocity
U_{f}	6.21	spectral volume velocity
$U_{\rm f}^2$	6.20	volume velocity spectral density
ν	1.14	volume
	1.24	velocity

Symbol	Item	Quantity
	6.13	sound particle velocity
v _f	6.15	spectral sound particle velocity
$v_{\rm f}^2$	6.14	sound particle velocity spectral density
V	1.14	volume
	2.23.1	potential energy
	5.6	electrostatic potential, potential difference
	5.8	voltage, electromotive force
	6.22	volume displacement
w	2.24	energy density
	6.28	sound energy density
W	2.22	work
	2.23	energy
	4.7	radiant energy
	6.26	sound power
x	6.8	linear displacement
X	5.55	electric reactance
X _a	6.37	acoustic reactance
X _m	6.46	mechanical reactance
X _r	6.55	rotational reactance
Y	5.59	electrical admittance
	6.87	porosity
Y _a	6.40	acoustic admittance
Y _c	7.9	electrical admittance of clamped transducer
Y _{ec}	7.9	electrical admittance of clamped transducer

Symbol	Item	Quantity
Y _{ef}	7.7	electrical admittance of transducer in vacuo
Y _{em}	7.11	motional admittance
Y _f	7.7	electrical admittance of transducer in vacuo
Y _m	6.49	mechanical admittance, mobility
	7.11	motional admittance
Y _r	6.58	rotational admittance
Y _s	6.34	specific acoustic admittance
z	6.32	characteristic impedance of a medium
Ζ	5.54	electrical impedance
Za	6.35	acoustic impedance
Z _c	6.32	characteristic impedance of a medium
	7.8	electrical impedance of clamped transducer
Z _{ec}	7.8	electrical impedance of clamped transducer
Z _{ef}	7.6	electrical impedance of transducer in vacuo
Z _{em}	7.10	motional impedance
Z _f	7.6	electrical impedance of transducer in vacuo
Zm	6.44	mechanical impedance
	7.10	motional impedance
Z _{ph}	7.5	transfer impedance of pro- jector and hydrophone
Z _r	6.53	rotational impedance
Zs	6.33	specific acoustic impedance
α	1.1	lane angle

Symbol	Item	Quantity
	1.23	angular acceleration
	1.30	attenuation coefficient
	4.40.1	spectral absorption factor, spectral absorptance
	5.47.1	transformer ratio
	6.16	sound particle acceleration
	6.70	attenuation coefficient
	6.80	statistical absorption coef- ficient, random incidence energy absorption coefficient
$\alpha_{\rm f}$	6.18	spectral sound particle acceleration
$\alpha_{\rm f}^2$	6.17	sound particle acceleration spectral density
$lpha_{ m Sab}$	6.83	Sabine absorption coefficient
$lpha_{ heta}$	6.79	absorption coefficient at incidence angle
β	1.1	plane angle
	1.31	phase coefficient
	6.66	coefficient of nonlinearity
	6.71	phase coefficient
γ	1.1	plane angle
	1.32	propagation coefficient
	2.15	shear strain
	3.14.3	ratio of specific heat capacities
	5.51	conductivity
	6.72	propagation coefficient
	6.99	directivity factor

Table 11—Alphabetical list of quantity symbols (continued)

Symbol	Item	Quantity
Г	6.95	relative field frequency response
δ	1.6	thickness
	1.28	damping coefficient
	6.69	damping coefficient, decay rate
Δ	6.67	dilatation
$\Delta L_{\rm S/N}$	8.18	signal-to-noise differen- tial, signal differential
$\Delta \theta_3$	6.91	beam width at -3 dB
$\Delta \theta_6$	6.92	beam width at -6 dB
$\Delta \theta_{10}$	6.93	beam width at -10 dB
$\Delta heta_{\infty}$	6.94	beam width between first nulls
ε	2.14	linear strain
	2.16	strain tensor
	4.21.1	emissivity
	5.11	capacitivity, permittivity, absolute permittivity
	6.104	Mach number
ϵ_{ii}	2.14	linear strain
$arepsilon_{ij}$	2.15	shear strain
\mathcal{E}_{r}	5.12	relative capacitivity, rela- tive permittivity, dielec- tric constant
ζ	6.73	field quantity dissipation coefficient
2ζ	6.73.1	energy dissipation coefficient
η	2.26	efficiency
	6.101	reverberation factor
θ	1.1	plane angle

Symbol	Item	Quantity
	2.17	volume strain
	3.2	temperature, Celsius temperature
	5.82	phase angle, phase difference
	6.67	dilatation
θ_3	6.91	beam width at -3 dB
θ_6	6.92	beam width at -6 dB
θ_{10}	6.93	beam width at -10 dB
$ heta_{\infty}$	6.94	beam width between first nulls
Θ	3.1	absolute temperature, thermodynamic temperature
K	5.12	relative capacitivity, rela- tive permittivity, dielec- tric constant
λ	1.10	wavelength
	4.40.1	spectral absorption factor, spectral absorptance
	4.40.2	spectral reflection factor, spectral reflectance
	10.1	judged loudness
$\lambda_{ m c}$	5.78	critical wavelength, cutoff wavelength
λ _r	5.77	resonance wavelength
Λ	1.29	logarithmic decrement
	5.26	magnetic flux linkage
	6.65	parameter of nonlinearity
	6.68	logarithmic decrement
μ	2.18	Poisson's ratio
	5.29	magnetic permeability, absolute permeability

Table 11—Alphabetical list of quantity	symbols (continued)
--	--------------------	---

Symbol	Item	Quantity
μ _r	5.30	relative permeability
v	1.18	frequency
	2.18	Poisson's ratio
	6.85	collision frequency
٤	6.10	sound particle displacement
ξ _f	6.12	spectral sound particle displacement
$\xi_{\rm f}^{2}$	6.11	sound particle displace- ment spectral density
ξ_x	6.8	linear displacement
ρ	2.2	mass density
	4.40.2	spectral reflection factor, spectral reflectance
	5.49	resistivity, volume resistivity
	6.63	instantaneous density
	6.74	energy reflection coefficient
ρ _e	5.49	resistivity, volume resistivity
$ ho_{ m o}$	6.62	average density
σ	2.11	normal stress
	2.13	stress tensor
	5.3	surface density of charge
	5.51	conductivity
	6.89	flow resistivity
	9.28	standard deviation
$\sigma_{\rm e}$	5.51	conductivity
σ_{ii}	2.11	normal stress
σ_{ij}	2.12	shear stress

Symbol	Item	Quantity
τ	1.17	time constant
	2.12	shear stress
	6.76	energy transmission coefficient
φ	1.1	plane angle
	5.6	electrostatic potential, potential difference
	5.82	phase angle, phase difference
	6.9	rotational displacement
	6.24	velocity potential
Φ	4.10	radiant power, radiant energy flux
	4.30	luminous flux
	5.24	magnetic flux
$\Phi_{ m e}$	4.10	radiant power, radiant energy flux
$\Phi_{\rm v}$	4.30	luminous flux
ψ	1.1	plane angle
	6.73.1	energy dissipation coefficient
ω	1.2	solid angle
	1.20	angular frequency
	1.21	angular velocity
ω _c	5.76	critical angular frequency, cutoff angular frequency
ω _r	5.75	resonance angular frequency
ω _o	5.76.2	geometric midband angu- lar frequency
ω_1, ω_2	5.76.1	cutoff angular frequencies
Ω	1.2	solid angle

Table 11—Alphabetical list of quantity symbols (continued)

Abbre- viation	Item	Quantity
AI	10.19	articulation index
APWL	9.13	A-weighted sound power level
ASEL	9.26	A-weighted sound expo- sure level
BNC	9.33.1	balanced noise criterion
BSPL	9.11.1	band pressure level
CDR	10.25	composite damage risk
CNEL	9.25	community noise equiva- lent level
CNR	10.14	composite noise rating
D	9.39	noise reduction
DL	9.20	day average sound level
DNL	9.24	day-night average sound level
DT	8.18	detection threshold
DTL	9.21	daytime average sound level
EDRL	10.24	effective damage risk level
EL	8.5	echo level
	9.22	evening average sound level
EPNL	10.10	effective perceived noise level
FA	9.2	fast A-weighted sound level
FB	9.4	fast B-weighted sound level
FC	9.6	fast C-weighted sound level
FD	9.8	fast D-weighted sound level

Abbre- viation	Item	Quantity
FOM	8.26	figure of merit
FSTC	9.44	field sound transmission class
FTL	9.42	field transmission loss
RL	8.15	reverberation level
HL	10.20	hearing level
IAL	9.16	impulse A-weighted sound level
IIC	9.50	impact isolation class
	9.50.1	impact insulation class
IL	8.4	incident sound pressure level of signal
	9.57	sound intensity level
LL	10.4	calculated loudness level
LR	9.40	level reduction
MDS	8.23	minimum detectable sig- nal level
MXAL	9.29	maximum A-weighted sound level
MXPNL	10.7	maximum perceived noise level
MXTPNL	10.9	maximum tone-corrected perceived noise level
NC	9.33	noise criterion level
NEF	10.13	noise exposure forecast
NIC	9.46	noise isolation class
NIHL	10.21	noise-induced hearing loss
NIPTS	10.22	noise-induced permanent threshold shift
NL	8.7	self-noise level
	9.23	night average sound level

Abbre- viation	Item	Quantity
NNI	9.31	noise and number index
NNIC	9.47	normalized noise isola- tion class
NPL	9.28	noise pollution level
NR	9.33.3	noise rating
	9.39	noise reduction
OBSPL	9.10	octave-band sound pres- sure level
PKAL	9.30	peak A-weighted sound level
PNC	9.34	preferred frequency noise criterion level
PNL	10.6	perceived noise level
PNR	9.14	product noise rating
PSIL	10.16	preferred frequency speech interference level
PSL	9.15	sound pressure spectrum level
PWL	9.12	sound power level
QPNL	10.11	equivalent continuous per- ceived noise level
RC	9.33.2	room criterion
RL	8.15	reverberation level
RS	8.16	reverberation strength
SA	9.3	slow A-weighted sound level
SB	9.5	slow B-weighted sound level
SC	9.7	slow C-weighted sound level
SD	9.9	slow D-weighted sound level
SE	8.24	signal excess

Г

Abbre- viation	Item	Quantity
SEL	9.26	A-weighted sound expo- sure level
SI	10.18	speech intelligibility
SIL	10.15	speech interference level
SIL (0.5–4)	10.17	speech interference level by ANSI S3.14-1977 [B2]
SL	8.1	source level
SLD	9.41	sound level difference
SLN	9.37	ARI sound level number
SPL	9.1	sound pressure level
SRN	9.36	ARI sound rating number
STC	9.43	sound transmission class
TAL	9.17	time average A-weighted sound level
	9.17.1	time interval equivalent continuous sound level
TL	8.12	transmission loss
	9.38	sound transmission loss
TNI	9.32	traffic noise index
TOBSPL	9.11	one-third-octave-band sound pressure level
TPNL	10.8	tone-corrected perceived noise level
TS	8.14	target strength
TTS2	10.23	temporary threshold shift 2 min after cessation of noise
VAL	9.53	vibratory acceleration level
VDL	9.55	vibratory displacement level
VFL	9.56	vibratory force level

Т

Abbre- viation	Item	Quantity
VJL	9.53.1	vibratory jerk level
VVL	9.54	vibratory velocity level
WEPNL	10.12	weighted equivalent con- tinuous perceived noise level
WS	8.17	wake strength
1HL	9.18	hourly average sound level
8HAL	9.19.1	8-h average A-weighted sound level
8HL	9.19	8-h average sound level

Table 12—Alphabetical list of abbreviations (continued)

Table 13—Index of quantities

Quantity	Item	Quantity	Item
absolute permeability	5.29	angular frequency	1.20
absolute permittivity	5.11	angular frequency, critical	5.76
absolute temperature	3.1	angular frequency, cutoff	5.76
absorption coefficient at incidence angle θ	6.79	angular frequency, resonance	5.75
absorption coefficient at random incidence		angular midband frequency	5.76.2
absorption coefficient, Sabine	6.83	angular resonance frequency	5.75
absorption coefficient, statistical	6.80	angular velocity	1.21
absorption, Sabine	6.82	antiresonance frequency	5.73.1
acceleration, angular	1.23	apparent power	5.64
acceleration of free fall	1.27	area	1.13
acceleration, gravitational	1.27	ARI sound level number	9.37
acceleration level, vibratory	9.53	ARI sound rating number	9.36
acceleration, linear	1.26	array gain	6.103
acceleration, sound particle	6.16	articulation index	10.19
acceleration, sound particle, spectral	6.18	attenuation coefficient	1.30, 6.70
acceleration, sound particle, spectral densit	•	attenuation loss	8.11
acoustic admittance, specific	6.34	audio program, volume of	9.60
acoustic compliance	6.43	average A-weighted sound level, 8-h	9.19.1
acoustic conductance	6.41	average (mass) density	6.62
acoustic energy	6.27	average sound level, day	9.20
acoustic energy density	6.28	average sound level, day-night	9.24
acoustic impedance	6.35	average sound level, daytime	9.21
acoustic impedance, characteristic	6.32	average sound level, 8-h	9.19
acoustic impedance, specific	6.33	average sound level, evening	9.22
acoustic inertance	6.38	average sound level, hourly	9.18
acoustic intensity	6.25	average sound level, night	9.23
acoustic mass	6.38	A-weighted impulse sound level	9.16
acoustic power	6.26	A-weighted sound exposure level	9.26
acoustic pressure	6.2	A-weighted sound level, time average	9.17
acoustic reactance	6.37	A-weighted sound power level	9.13
acoustic resistance	6.36		0.00.1
acoustic stiffness	6.39	balanced noise criterion	9.33.1
acoustic susceptance	6.42	band limits	5.74.1
active power	5.62	band pressure level	9.11.1
admittance, acoustic	6.40	bandwidth	1.18.1
admittance, electric	5.59	bandwidth level correction	8.9
admittance, electrical, of clamped transduc		beamwidth at -3 dB	6.91
admittance, electrical, of transducer in vacu		beamwidth at -6 dB	6.92
admittance, mechanical	6.49	beamwidth at -10 dB	6.93
admittance, motional	7.11 6.58	beamwidth between first nulls	6.94
admittance, rotational	6.38 6.34	breadth bulk modulus	1.4 2.21
admittance, specific acoustic	0.34 9.45	bulk modulus	2.21
airborne sound insulation	9.43 9.48	calculated loudness	10.3
airborne sound insulation margin	9.48 6.75	calculated loudness level	10.3
amplitude reflection coefficient amplitude transmission coefficient	6.73 6.77	capacitance	5.38
angle, phase	5.82	capacitivity	5.58 5.11
angle, plane	1.1	capacitivity, relative	5.12
angle, solid	1.1	Celsius temperature	3.2
angular acceleration	1.23	characteristic impedance	6.32
angular cutoff frequencies	5.76.1	charge, electric	5.1
angular deviation loss	6.96	charge, surface density of	5.3
angular deviation loss, receiver	6.98	clamped transducer, electrical admittan	
angular deviation loss, receiver	6.97	clamped transducer, electrical impedance	
	5.21	stamped dansadeer, electrical impedant	

Quantity	Item	Quantity	Item
class, field sound transmission class, impact isolation	9.44 9.50	current, particle velocity response to, in sound field	7.18
class, noise isolation	9.46	current, pressure response to, in coupler	7.16
class, noise isolation, normalized	9.47	current, pressure response to, in sound f	
class, sound transmission	9.43	current response to particle velocity	7.27
clipping loss	8.21	in sound field	
coefficient of absorption at incidence	6.79	current response to pressure in coupler	7.25
angle θ	6.00	current response to pressure in sound fie	
coefficient of absorption at random	6.80	cutoff angular frequencies	5.76.1
incidence	6.00	cutoff angular frequency	5.76
coefficient of absorption, Sabine	6.83	cutoff frequencies	5.74.1
coefficient of absorption, statistical	6.80	cutoff frequency	5.74
coefficient of amplitude reflection	6.75	cutoff wavelength	5.78
coefficient of amplitude transmission	6.77	cylindrical waves, reciprocity parameter	for 7.2
coefficient of attenuation	1.30, 6.70	democra siste commenciate	10.25
coefficient of damping	1.28, 6.69	damage risk, composite	10.25
coefficient of energy dissipation	6.73	damage risk level, effective	10.24
coefficient of energy reflection coefficient of energy transmission	6.74 6.76		1.28, 6.69 9.20
coefficient of flare of a horn	6.90	day average sound level day-night average sound level	9.20 9.24
coefficient of nonlinearity	6.66		9.24
coefficient of phase	1.31, 6.71	daytime average sound level decay rate	9.21 6.69
coefficient of propagation	1.32, 6.72	5	1.29, 6.68
collision frequency	6.85	density, average mass	6.62
community noise equivalent level	9.25	density, electric flux	5.10
compliance, acoustic	6.43	density, energy (volume)	2.24
compliance, mechanical	6.52	density, instantaneous	6.63
compliance, rotational	6.61	density, magnetic flux	5.25
composite damage risk	10.25	density, mass	2.2
composite noise rating	10.14	density, sound energy	6.28
condensation	6.64	density, sound energy, level of	9.58
conductance, acoustic	6.41	density, surface, of charge	5.3
conductance, electric	5.50	design margin	8.25
conductance, mechanical	6.50	detectable signal level, minimum	8.23
conductance, rotational	6.59	detection threshold	8.19
conductivity	5.51	deviation loss, angular	6.96
constant, dielectric	5.12	deviation loss, receiver	6.98
constant, magnetic	5.35	deviation loss, transmitter	6.97
constant, room	6.86	deviation, standard	9.28
correction for bandwidth	8.9	dielectric constant	5.12
coupler response, open-circuit voltage	7.22	difference, phase	5.82
to pressure		difference, potential	5.6
coupler response, power to pressure	7.28	difference, sound level	9.41
coupler response, pressure to current	7.16	differential, signal-to-noise	8.18
coupler response, pressure to power	7.19	differential for recognition	8.22
coupler response, pressure to voltage	7.13	diffuse sound, reciprocity parameter for	7.4
coupler response, short-circuit current	7.25	dilatation	6.67
to pressure	0.04	directivity factor	6.99
criterion level, noise	9.34	directivity index	6.100
criterion level, noise, preferred frequen		displacement, electric	5.10
critical angular frequency	5.76	displacement level, vibratory	9.55
critical frequency	5.74	displacement, linear	6.8
critical wavelength	5.78	displacement, rotational	6.9
current, electric	5.18	displacement, sound particle	6.10

Quantity	ltem	Quantity	Item
displacement, sound particle spectral	6.11	equivalent continuous sound level,	9.17.1
density		time interval	
displacement, spectral sound particle	6.12	evening average sound level	9.22
displacement, volume	6.22	excess, signal	8.24
dissipation coefficient, energy	6.73	exposure forecast, noise	10.13
distance	1.9	exposure level, A-weighted sound	9.26
distance from source	1.7	exposure, sound	
dome loss	8.3	at x dB per halving of duration	6.29
dynamic mass	6.47	at 3 dB per halving of duration	6.30
dynamic stiffness	6.48	at 5 dB per halving of duration	6.31
dynamic torsional stiffness	6.57		
		factor, directivity	6.99
echo level	8.5	factor, power	5.65
effective damage risk level	10.24	factor, quality	5.58
effective perceived noise level	10.10	factor, reactive	5.66
efficiency	2.26	factor, reverberation	6.101
8-h average A-weighted sound level	9.19.1	fast, A-weighted sound level exceeded	9.27
8-h average sound level	9.19	10% of time	
elasticity, modulus of	2.19	fast sound pressure level—See	
electrical admittance	5.59	sound pressure level	
electrical admittance of clamped transdu		field quantity dissipation coefficient	6.73
electrical admittance of transducer in vac		field quantity response, relative	6.95
electric charge	5.1	field response, open-circuit voltage to	7.24
electrical conductance	5.50	particle velocity	
electric current	5.18	field response, open-circuit voltage to	7.23
electric displacement	5.10	pressure	
electric field strength	5.5	field response, particle velocity to current	7.18
electric flux density	5.10	field response, particle velocity to power	7.21
electrical impedance	5.54	field response, particle velocity to voltage	7.15
electrical impedance of clamped transdu		field response, power to particle velocity	7.30
electrical impedance of transducer in vac		field response, power to pressure	7.29
electrical reactance	5.55	field response, pressure to current	7.17
electrical resistance	5.48	field response, pressure to power	7.20
electrical susceptance	5.60	field response, pressure to voltage	7.14
electricity, quantity of	5.1	field response, short-circuit current	7.27
electromotive force	5.8	to particle velocity	,,
electrostatic potential	5.6	field response, short-circuit current to	7.26
emissivity	4.21.1	pressure	7.20
energy	2.23	field sound transmission class	9.44
energy density	2.23	field strength, electric	5.5
energy density level, sound	9.58	field strength, magnetic	5.21
energy density, sound	6.28	field transmission loss	9.42
energy dissipation coefficient	6.73.1	figure of merit	8.26
energy, kinetic	2.23.2	flare coefficient of a horn	6.90
energy level, sound	9.59	flow resistance, specific	6.88
energy, potential	2.23.1	flow resisturice, specific	6.89
energy reflection coefficient	6.74	flux density, electric	5.10
energy, sound	6.27	flux density, magnetic	5.25
energy transmission coefficient	6.76	flux linkage, magnetic	5.26
equivalent continuous perceived noise	10.11	flux, magnetic	5.20
level	10.11	force	2.7
equivalent continuous perceived noise	10.12	force level, vibratory	2.7 9.56
level, weighted	10.12	force, magnetomotive	5.23
equivalent level, community noise	9.25	force, moment of	2.8
equivalent level, community noise	7.43	ioree, moment or	2.0

Quantity	ltem	Quantity	Item
forecast, noise exposure	10.13	impedance, motional	7.10
free path, mean	6.84	impedance, rotational	6.53
frequencies, angular cutoff	5.76.1	impedance, specific acoustic	6.33
frequencies, cutoff	5.74.1	impedance, transfer, of projector	7.5
frequency	1.18	and hydrophone	
frequency, angular	1.20	impulse A-weighted sound level	9.16
frequency, antiresonance	5.73.1	impulse, pressure	6.5
frequency, collision	6.85	impulse, spectral pressure	6.7
frequency, critical	5.74	impulse spectral density, pressure	6.6
frequency, critical angular	5.76	impulse spectrum density, pressure	6.6
frequency, cutoff	5.74	index, articulation	10.19
frequency, cutoff angular	5.76	index, directivity	6.100
frequency level	9.61	index, impact-sound	9.51
frequency, midband	5.74.2	index, noise and number	9.31
frequency, midband angular	5.76.2	index of refraction	6.78
frequency, resonance	5.73	index, reverberation	6.102
frequence, resonance angular	5.75	index, sound reduction	9.38
frequency, rotational	1.19	index, traffic noise	9.32
		inductance	5.40
gain, array	6.103	inductance, self-	5.40
gain, signal processing	8.20	induction, magnetic	5.25
gain due to multiple ray paths	8.13	inertance, acoustic	6.38
general symbol for response of transducer	7.12	inertance, rotational	6.56
geometric midband angular frequency	5.76.2	inertia, moment of	2.4
geometric midband frequency	5.74.2	instantaneous density	6.63
gravitational acceleration	1.27	insulation, airborne sound	9.45
group velocity	1.25.2	insulation class, impact	9.50.1
		insulation margin, airborne sound	9.48
hearing level	10.20	insulation, sound	9.38
hearing loss	10.20	intelligibility, speech	10.18
hearing loss, noise-induced	10.21	intensity level, sound	9.57
heat capacities per unit volume	3.14.4	intensity, sound	6.25
heat capacities, specific, ratio of	3.14.3	interference level, speech	10.15
heat capacity, specific	3.14	irradiance	4.16
heat capacity, specific at constant pressure	3.14.1	isolation class, impact	9.50
heat capacity, specific at constant volume		isolation class, noise	9.46
height	1.5	isolation class, noise, normalized	9.47
hemispherical source sound level	9.14		
horn, coefficient of flare	6.90	jerk level, vibratory	9.53.1
hourly average sound level	9.18	judged loudness	10.1
		judged loudness level	10.2
illuminance	4.34		
impact insulation class	9.50.1	kinetic energy	2.23.2
impact isolation class	9.50		
impact protection margin	9.52	length	1.3
impact-sound index	9.51	length of line segment	1.9
impact-sound pressure level	9.49	length of path	1.9
impact-sound pressure level, normalized	9.49.1	level correction for bandwidth	8.9
impedance, acoustic	6.35	level difference, sound	9.41
impedance, characteristic	6.32	level, frequency	9.61
impedance, electric	5.54	level reduction	9.40
impedance, electrical, of clamped transduc		level, source	8.1
impedance, electrical, of transducer in vacu		limits, frequency band	5.74.1
impedance, mechanical	6.44	linear acceleration	1.26

Quantity	ltem	Quantity	ltem
linear displacement	6.8	mechanical reactance	6.46
linear strain	2.14	mechanical resistance	6.45
line segment	1.9	mechanical stiffness	6.48
linkage, magnetic flux	5.26	mechanical susceptance	6.51
logarithmic decrement	1.29, 6.68	merit, figure of	8.26
loss, angular deviation	6.96	midband angular frequency	5.76.2
loss, angular deviation, receiver	6.98	midband frequency	5.74.2
loss, angular deviation, transmitter	6.97	minimum detectable signal level	8.23
loss, attenuation	8.11	mobility	6.49
loss, field transmission	9.42	modulus, bulk	2.21
loss, propagation	8.12	modulus, of elasticity	2.19
loss, sonar dome	8.3	modulus, of rigidity	2.20
loss, sound transmission	9.38	moment of force	2.8
loss, spreading	8.10	moment of inertia	2.4
loss, thresholding	8.21	moment, second axial of area	2.5
loss, transmission in water	8.12	moment, second polar of area	2.6
loudness, calculated	10.3	momentum	2.3
loudness, judged	10.1	motional admittance	7.11
loudness level, calculated	10.4	motional impedance	7.10
loudness level, judged	10.2	multiple ray path gain	8.13
luminance	4.32		
luminous efficacy	4.36.1	night average sound level	9.23
luminous exitance	4.33	noise-bandwidth level correction	8.9
luminous flux	4.30	noise, community, equivalent level	9.25
luminous intensity	4.29	noise criterion level	9.33
	< 10 I	noise criterion level, preferred frequency	9.34
Mach number	6.104	noise criterion, balanced	9.33.1
magnetic constant	5.35	noise exposure—See sound exposure	10.10
magnetic field strength	5.21	noise exposure forecast	10.13
magnetic flux	5.24	noise index, traffic	9.32
magnetic flux density	5.25	noise-induced hearing loss	10.21
magnetic flux linkage	5.26	noise-induced permanent threshold shift	10.22
magnetic induction	5.25	noise isolation class	9.46
magnetic permeability	5.29	noise isolation class, normalized	9.47
magnetic permeability, relative	5.30	noise level, effective perceived	10.10
magnetization	5.35	noise level, equivalent continuous	10.11
magnetomotive force margin, airborne sound insulation	5.23	perceived noise level, maximum tone-corrected	10.9
	9.48 8.25		10.9
margin, design margin, impact protection	8.23 9.52	perceived noise level, perceived	10.6
margin, impact protection mass	9.52 2.1	noise level, self-noise	8.7
mass, acoustic	6.38	noise level, tone-corrected perceived	10.8
mass, acoustic mass density	2.2	noise level, maximum perceived	10.3
mass density, average	6.62	noise level, weighted equivalent	10.7
mass density, average mass, dynamic	6.47	continuous perceived	10.12
maximum A-weighted sound level	9.29	noise and number index	9.31
maximum perceived noise level	10.7	noise pollution level	9.28
maximum perceived noise rever maximum tone-corrected perceived	10.7	noise pointion level	9.33.3
noise level	10.7	noise rating, composite	10.14
mean free path	6.84	noise rating, product	9.14
mechanical admittance	6.49	noise reduction	9.39
mechanical compliance	6.52	noise, sound pressure level of	9.39 8.7
mechanical conductance	6.50	noise, sound pressure rever of noise, sound pressure spectrum level of	8.8
mechanical impedance	6.44	noise, sound pressure spectrum level of noise spectrum level, self-noise	8.8
meenumeur impedunce	0.77	noise spectrum iever, sen noise	0.0

Quantity	ltem	Quantity	ltem
noisiness	10.5	period	1.16
nonlinearity, coefficient of	6.66	permanent threshold shift, noise-induced	10.22
nonlinearity, parameter of	6.65	permeability	5.29
normal stress	2.11	permeability, absolute	5.29
normalized impact-sound pressure level	9.49.1	permeability, magnetic	5.29
normalized noise isolation class	9.47	permeability, relative	5.30
number, angular wave	1.12	permeance	5.53
number, ARI sound level	9.37	permittivity	5.11
number, ARI sound rating	9.36	permittivity, absolute	5.11
number, circular wave	1.12	permittivity, relative	5.12
number, noise and index	9.31	phase angle	5.82
number of turns (in a winding)	5.45		81, 6.71
numerical aperture	4.51	phase difference	5.82
	0.10	phase velocity	1.25.1
octave-band sound pressure level	9.10	plane angle	1.1
one-third-octave-band sound pressure level		plane waves, reciprocity parameter for	7.3
open-circuit voltage response to	7.24	Poisson's ratio	2.18
particle velocity in sound field	7 22	pollution level, noise	9.28
open-circuit voltage response to	7.22	porosity	6.87 5.6
pressure in coupler	7.23	potential difference potential, electrostatic	5.6 5.6
open-circuit voltage response to pressure in sound field	1.25	potential energy	2.23.1
pressure in sound neid		potential, velocity	6.24
parameter of nonlinearity	6.65	power	2.25
particle acceleration (sound)	6.16	power, acoustic	6.26
particle acceleration, spectral	6.18	power, active	5.62
particle acceleration, spectral density	6.17	power, apparent	5.64
particle displacement (sound)	6.10	power factor	5.65
particle displacement, spectral	6.12	power level, A-weighted sound	9.13
particle displacement, spectral density	6.11	power level, sound	9.12
particle velocity (sound)	6.13	power, particle velocity response to,	7.21
particle velocity, current response to	7.27	in sound field	
particle velocity, power response to	7.30	power, pressure response to, in coupler	7.19
particle velocity, response to current	7.18	power, pressure response to, in sound field	7.20
particle velocity, response to power	7.21	power, reactive	5.63
particle velocity, response to voltage	7.15	power response to particle velocity	7.30
particle velocity, spectral	6.15	in sound field	
particle velocity, spectral density	6.14	power response to pressure in coupler	7.28
particle velocity, voltage response to	7.24	power response to pressure in sound field	7.29
path, length of	1.9	power, sound	6.26
path, mean free	6.84	preferred frequency noise criterion level	9.34
peak A-weighted sound level	9.30	preferred-frequency speech interference	10.16
perceived noise level	10.6	level	0 10
perceived noise level, effective	10.10	pressure	2.10
perceived noise level, equivalent continuous	10.11	pressure impulse	6.5 6.7
perceived noise level, maximum	10.7	pressure impulse, spectral pressure impulse, spectral density	6.7 6.6
perceived noise level, maximum	10.7	pressure impulse, spectrum density	0.0 6.6
tone-corrected	10.9	pressure in coupler, current response to	7.25
perceived noise level, tone-corrected	10.9	pressure in coupler, voltage response to	7.23
perceived noise level, weighted equivalent		pressure in field, current response to	7.26
continuous	10.12	pressure in field, voltage response to	7.23
percent of time fast A-weighted sound level	9.27	pressure level, band	9.11.1
exceeded	-	pressure level, impact-sound	9.49

Quantity	ltem	Quantity	ltem
pressure level of noise	8.7	reciprocity parameter for spherical waves	7.1
pressure level, normalized impact-sound	1 9.49.1	recognition differential	8.22
pressure level of signal	8.4	reduction, level	9.40
pressure level, sound—See sound		reduction, noise	9.39
pressure level		reflection coefficient, amplitude	6.75
pressure response in coupler to current	7.16	reflection coefficient, energy	6.74
pressure response in coupler to power	7.19	refractive index 4.44	4, 6.78
pressure response in coupler to voltage	7.13	relative capacivity	5.12
pressure response in field to current	7.17	relative field quantity response	6.95
pressure response in field to power	7.20	relative permeability	5.30
pressure response in field to voltage	7.14	relative permittivity	5.12
pressure, sound	6.2	reluctance	5.52
pressure spectral density, sound	6.3	resistance, acoustic	6.36
pressure, spectral sound	6.4	resistance, electrical	5.48
pressure spectrum density, sound	6.3	resistance, mechanical	6.45
pressure spectrum level	9.15	resistance, rotational	6.54
pressure spectrum level of noise	8.8	resistance, specific flow	6.88
pressure spectrum level of signal	8.6	resistivity	5.49
pressure, static	6.1	resistivity, flow	6.89
processing gain	8.20	resistivity, volume	5.49
product noise rating	9.14	resonance angular frequency	5.75
	1.32, 6.72	resonance frequency	5.73
propagation loss	8.12	resonance wavelength	5.77
protection margin, impact	9.52	response of transducer, general symbol for	7.12
r ····································		response, relative field quantity	6.95
quality factor	5.58	response to current, particle velocity	7.18
quantity of electricity	5.1	in sound field	
1		response to current, pressure in coupler	7.16
radiant energy	4.7	response to current, pressure in sound field	7.17
radiant energy flux	4.10	response to particle velocity in sound field,	7.24
radiant exitance	4.15	open-circuit voltage	
radiant intensity	4.13	response to particle velocity in sound field,	7.30
radiant power	4.10	power	
radius	1.7	response to particle velocity in sound field,	7.27
random incidence energy absorption	6.80	short-circuit current	
coefficient		response to power, particle velocity in	7.21
rate of decay	6.69	sound field	
rating, composite noise	10.14	response to power, pressure in coupler	7.19
rating, noise	9.33.3	response to power, pressure in sound field	7.20
rating number, ARI	9.36	response to pressure in coupler,	7.22
rating sound level	9.14	open-circuit voltage	
ratio of specific heat capacities	3.14.3	response to pressure in coupler, power	7.28
ratio, transformer	5.47.1	response to pressure in coupler,	7.25
ratio, turns	5.47	short-circuit current	1.20
reactance, acoustic	6.37	response to pressure in sound field,	7.23
reactance, electrical	5.55	open-circuit voltage	1.23
reactance, mechanical	6.46	response to pressure in sound field, power	7.29
reactance, rotational	6.55	response to pressure in sound field,	7.26
reactive factor	5.66	short-circuit current	7.20
reactive power	5.63	response to voltage, particle velocity	7.15
receiver deviation loss	6.98	in sound field	1.15
reciprocity parameter for cylindrical wa		response to voltage, pressure in coupler	7.13
reciprocity parameter for diffuse sound	7.4	response to voltage, pressure in couplet	
reciprocity parameter for plane waves	7.4	reverberation factor	6.101
recipionity parameter for plane waves	1.5		0.101

Quantity	Item	Quantity	ltem
reverberation index	6.102	sound energy density level	9.58
reverberation level	8.15	sound exposure	
reverberation strength	8.16	at x dB per halving of duration	6.29
reverberation time	6.81	at 3 dB per halving of duration	6.30
rigidity, modulus of	2.20	at 5 dB per halving of duration	6.31
risk, composite damage	10.25	sound exposure level, A-weighted	9.26
risk level, effective damage	10.24	sound insulation	9.38
room constant	6.86	sound insulation, airborne	9.45
room criterion	9.33.2	sound insulation margin, airborne	9.48
rotational admittance	6.58	sound intensity	6.25
rotational compliance	6.61	sound intensity level	9.57
rotational conductance	6.59	sound level, average during time T	9.17
rotational displacement	6.9	sound level, A-weighted, maximum	9.29
rotational frequency	1.19	sound level, A-weighted, peak	9.30
rotational impedance	6.53	sound level, day average	9.20
rotational inertance	6.56	sound level, day-night average	9.24
rotational reactance	6.55	sound level, daytime average	9.21
rotational resistance	6.54	sound level difference	9.41
rotational stiffness	6.57	sound level, 8-h average	9.19
rotational susceptance	6.60	sound level, 8-h average A-weighted	9.19.1
rotation, speed of	1.19	sound level, evening average	9.22
		sound level, fast A-weighted	9.2
Sabine absorption	6.82	sound level, fast A-weighted, exceeded	9.27
Sabine absorption coefficient	6.83	10% of time	~ • • •
second axial moment of area	2.5	sound level, hemispherical source	9.14
second polar moment of area	2.6	sound level, hourly average	9.18
segment, line	1.9	sound level, impulse A-weighted	9.16
self-noise level	8.7	sound level, maximum A-weighted	9.29
self-noise spectrum level	8.8	sound level, night average	9.23
shear modulus	2.20	sound level number, ARI	9.37
shear strain	2.15 2.12	sound level, peak A-weighted	9.30 9.35
shear stress short-circuit current response to particle	7.27	sound level, rating	9.33 9.3
velocity in sound field	1.21	sound level, slow A-weighted ssound level, time average A-weighted	9.3 9.17
short-circuit current response to pressure	7.25	sound level, time average A-weighted	9.17.1
in coupler	1.25	continuous	9.17.1
short-circuit current response to pressure	7.26	sound particle acceleration	6.16
in sound field	7.20	sound particle acceleration, spectral	6.18
signal bandwidth level correction	8.9	sound particle acceleration spectral density	
signal differential	8.18	sound particle displacement	6.10
signal differential for recognition	8.22	sound particle displacement, spectral	6.12
signal excess	8.24	sound particle displacement spectral densit	y 6.11
signal, sound pressure level of	8.4	sound particle velocity	6.13
signal, minimum detectable level	8.23	sound particle velocity, spectral	6.15
signal processing gain	8.20	sound particle velocity spectral density	6.14
signal-to-noise differential	8.18	sound power	6.26
simple source, strength of	6.23	sound power level	9.12
slow sound pressure level—See sound		sound power level, A-weighted	9.13
pressure level		sound pressure	6.2
solid angle	1.2	sound pressure level	9.1
sonar dome loss	8.3	sound pressure level, fast A-weighted	9.2
sound energy	6.27	sound pressure level, fast B-weighted	9.4
sound energy density	6.28	sound pressure level, fast C-weighted	9.6
sound energy level	9.59	sound pressure level, fast D-weighted	9.8

Quantity	ltem	Quantity	ltem
sound pressure level, impact	9.49	speech interference level defined by	
sound pressure level of noise	8.7	ANSI S3.14-1977 [B2]	10.17
sound pressure level, octave-band	9.10	speech interference level, preferred	10.16
sound pressure level, one-third-octave-band	1 9.11	frequency	
sound pressure level of signal	8.4	speed of electromagnetic waves in vacuum	4.6
sound pressure level, slow A-weighted	9.3	speed of rotation	1.19
sound pressure level, slow B-weighted	9.5	speed of sound	1.25
sound pressure level, slow C-weighted	9.7	spherical waves, reciprocity parameter for	7.1
sound pressure level, slow D-weighted	9.9	spreading loss	8.10
sound pressure, spectral	6.4	standard deviation	9.28
sound pressure spectral density	6.3	static pressure	6.1
sound pressure spectrum density	6.3	statistical absorption coefficient	6.80
sound pressure spectrum level	9.15	steady sound level, equivalent	9.17.1
sound pressure spectrum level of noise	8.8	stiffness, acoustic	6.39
sound pressure spectrum level of signal	8.6	stiffness, dynamic	6.48
sound rating number, ARI	9.36	stiffness, dynamic torsional	6.57
sound transmission class	9.43	stiffness, mechanical	6.48
sound transmission class, field	9.44	stiffness, torsional	6.57
sound transmission loss	9.38	strain, linear	2.14
source level	8.1	strain, shear	2.15
source, simple, strength of	6.23	strain tensor	2.16
source sound level, hemispherical	9.14	strain, volume	2.17
source spectrum level	8.2	strength, electric field	5.5
specific acoustic admittance	6.34	strength, magnetic field	5.21
specific acoustic impedance	6.33	strength, reverberation	8.16
specific flow resistance	6.88	strength of a simple source	6.23
specific heat capacities, ratio of	3.14.3	strength, target	8.14
specific heat capacity	3.14	strength, wake	8.17
	3.14.1	stress, normal	2.11
specific heat capacity at constant volume	3.14.2	stress, shear	2.12 2.13
spectral absorption factor	4.40.1 4.40.1	stress tensor	2.13 8.13
spectral absorption factor spectral density, pressure impulse	4.40.1 6.6	summation gain due to multiple ray paths surface density of charge	5.3
spectral density, pressure impulse spectral density, sound particle acceleration		susceptance, acoustic	6.42
spectral density, sound particle deceleration spectral density, sound particle displacement		susceptance, acoustic	5.60
spectral density, sound particle displacement spectral density, sound particle velocity	6.14	susceptance, mechanical	6.51
spectral density, sound pressure	6.3	susceptance, rotational	6.50
spectral density, volume velocity	6.20	susceptifice, fourtonal	0.50
spectral pressure impulse	6.7	target strength	8.14
spectral reflectance	4.40.2	temperature	3.2
spectral reflection factor	4.40.2	temperature, absolute	3.1
spectral sound particle acceleration	6.18	temperature, Celsius	3.3
spectral sound particle displacement	6.12	temperature, thermodynamic	3.1
spectral sound particle velocity	6.15	temporary threshold shift	10.23
spectral sound pressure	6.4	thermodynamic temperature	3.1
spectral volume velocity	6.21	thickness	1.6
spectrum density, pressure impulse	6.6	third-octave-band sound pressure level	9.11
spectrum density, sound pressure	6.3	threshold, detection	8.19
spectrum level of noise	8.8	threshold shift, noise-induced permanent	10.22
spectrum level of signal	8.6	threshold shift, temporary	10.23
spectrum level, sound pressure	9.15	thresholding loss	8.21
spectrum level of source	8.2	time	1.15
speech intelligibility	10.18	time average A-weighted sound level	9.17
speech interference level	10.15	time constant	1.17

Quantity	ltem	Quantity
time interval equivalent continuous	9.17.1	voltage, particle velocity response to,
sound level	1.16	in sound field
time of one cycle	1.16 6.81	voltage, pressure response to, in couple
time, reverberation	10.81	voltage, pressure response to, in sound voltage response to particle velocity
tone-corrected perceived noise level tone-corrected perceived noise level,	10.8	in sound field
maximum	10.9	voltage response to pressure in coupler
torque	2.9	voltage response to pressure in couplet
torsional stiffness, dynamic	6.57	volume
traffic noise index	9.32	volume of an audio signal program
transducer, clamped, electrical admittance		volume displacement
transducer, clamped, electrical impedanc		volume of an electrical audio program
transducer, electrical admittance of in va		volume resistivity
transducer, electrical impedance of in va		volume strain
transducer response, general symbol for	7.12	volume unit
transfer impedance of projector and	7.5	volume velocity
hydrophone		volume velocity, spectral
transformer ratio	5.47.1	volume velocity spectral density
transmission class, field sound	9.44	vu
transmission class, sound	9.43	
transmission coefficient, amplitude	6.77	wake strength
transmission coefficient, energy	6.76	water, transmission loss in
transmission loss	8.12	wavelength
transmission loss, field	9.42	wavelength, critical
transmission loss, sound	9.38	wavelength, cutoff
transmitter deviation loss	6.97	wavelength, resonance
turns, number of	5.45	wave number, angular
turns ratio	5.47	wave number, circular
		weighted equivalent continuous
vacuo, electrical admittance of transduce		perceived noise level
vacuo, electrical impedance of transduce	er in 7.6 1.24	weighted sound pressure level—See so
velocity velocity, angular	1.24	pressure level width
velocity of electromagnetic waves in	4.6	width of beam at -3 dB
vacuum	4.0	width of beam at -6 dB
velocity level, vibratory	9.54	width of beam at -10 dB
velocity, linear	1.24	width of beam between first nulls
velocity potential	6.24	work
velocity response in sound field to curren		Work
velocity response in sound field to power		Young's modulus
velocity response in sound field to voltage		6
velocity of sound	1.25	
velocity, sound particle	6.13	
velocity spectral density, sound particle	6.14	
velocity spectral density, volume	6.20	
velocity, spectral sound particle	6.15	
velocity, spectral volume	6.21	
velocity, volume	6.19	
vibratory acceleration level	9.53	
vibratory displacement level	9.55	
vibratory force level	9.56	
vibratory jerk level	9.53.1	
vibratory velocity level	9.54	
voltage	5.8	

voltage, pressure response to, in coupler	7.13
voltage, pressure response to, in sound field	
voltage response to particle velocity	7.24
in sound field	
voltage response to pressure in coupler	7.22
voltage response to pressure in sound field	7.23
volume	1.14
volume of an audio signal program	9.60
volume displacement	6.22
volume of an electrical audio program	9.60
volume resistivity	5.49
volume strain	2.17
volume unit	9.60
volume velocity	6.19
volume velocity, spectral	6.21
volume velocity spectral density	6.20
vu	9.60
wake strength	8.17
water, transmission loss in	8.12
wavelength	1.10
wavelength, critical	5.78
wavelength, cutoff	5.78
wavelength, resonance	5.77
wave number, angular	1.12
wave number, circular	1.12
weighted equivalent continuous	10.12
perceived noise level	
weighted sound pressure level—See sound	
pressure level	
width	1.4
width of beam at -3 dB	6.91
width of beam at -6 dB	6.92
width of beam at -10 dB	6.93
width of beam between first nulls	6.94
work	2.22
Young's modulus	2.19

ltem

7.15