IEEE Guide for the Selection of Monitoring for Circuit Breakers

Sponsor

Switchgear Committee of the IEEE Power Engineering Society

Approved 7 December 2000

IEEE-SA Standards Board

Abstract: Direction is provided for the selection of monitoring and for diagnostic parameters to be used with high-voltage circuit breakers (i.e., above 100 V). Guidance on appropriate parameters to be considered for monitoring applied to various circuit breaker technologies is also provided.

Keywords: failure characteristics; failure modes and effects analysis (FMEA); failure modes, effects, and criticality analysis (FMECA); failure rate; high-voltage circuit breakers; monitoring; online condition monitoring; risk assessment

 Print:
 ISBN 0-7381-2730-2
 SH94905

 PDF:
 ISBN 0-7381-2731-0
 SS94905

The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 18 April 2001. Printed in the United States of America.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied "AS IS."

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board 445 Hoes Lane P.O. Box 1331 Piscataway, NJ 08855-1331 USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

IEEE is the sole entity that may authorize the use of certification marks, trademarks, or other designations to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Introduction

(This introduction is not part of IEEE Std C37.10.1-2000, IEEE Guide for the Selection of Monitoring for Circuit Breakers.)

This first issue of this guide, IEEE Std C37.10.1-2000, provides guidance in the selection of monitoring for high-voltage circuit breakers. Monitoring for a particular circuit breaker is very dependent on the circuit breaker technology, age of the circuit breaker, details of the specific application, and the risks associated with the various failures possible with the circuit breaker and its many associated power or protection and control and other support components.

This guide is not intended to provide guidance on the monitoring of protection and control circuits and devices used with circuit breakers, even though such circuits and devices can have a significant effect on the overall performance of circuit breaker functions.

NOTE—This guide makes no attempt to address the many possible protection and control failure modes. These failure modes are dependent on the technology of the protective devices as well as on the manner in which they are applied on the power system. IEEE Std C37.10.1-2000 does not address the subject of software used in protective, control, or monitoring devices and systems.

Several methodologies are introduced. A methodology termed failure modes and effects analysis (FMEA) is presented to assist identification of significant failure modes and their causes. The concepts of risk assessment are introduced. The subsequently derived priority and economic analysis determines when and where monitoring is warranted.

The selection of monitoring for circuit breakers should be based on logical engineering and economic principles. Appropriate monitoring can be selected by considering failure modes and their effects on the circuit breaker and on the power system, the degree of risk or criticality associated with the failure, and the economics associated with each type of failure. Monitoring can be used to reduce or replace some inspections, optimize maintenance, enhance availability of the circuit breaker, improve safety to human and environment, and derive information on the condition of a specific circuit breaker (or information from several circuit breakers can be extrapolated to a larger population of identical circuit breakers).

Considerably more information can be gained by combining various signals than from an individual signal.

More advanced monitoring systems may include diagnostic analysis using tools such as artificial intelligence. These may relate recent monitoring data to historic monitoring data and provide engineering conclusions or actions required. Systems may be further enhanced by remote access through supervisory control and data acquisition (SCADA) or use of telephone dial-up systems. Eventually, it is presumed that systems will become integral to substation automation development.

Readers of this guide are advised of ongoing standards development work now underway that will provide useful supplementary guidance.

The IEEE Substations Committee is the draft stages of developing Draft Standard for Substation Integrated Protection, Control, and Data Acquisition Communications. The communication requirement for devices used to monitor substation equipment is a rapidly changing area.

The IEC is in the draft stages of producing IEC 60300, Dependability Management—Part 3-13: Application guide—Project risk management.

The IEEE Transformer Committee is developing similar guidance for selecting monitoring for transformers.

Monitoring of predominant failure causes and remedying them may also significantly reduce minor failure causes from occurring.

NOTE—Many of the techniques discussed in this guide could have application with many other types of components.

At the time this standard was completed, the Working Group on the Selection of Monitoring for Circuit Breakers had the following membership:

W. J. (Bill) Bergman, Chair

Carlos Isaac	Miklos J. Orosz
Richard P. Jackson	Jon Rennie
Robert Jeanjean	Gary Schauffler
R. William Long	Don Seay
Neil McCord	Devki N. Sharma
Georges F. Montillet	H. Melvin Smith
Anne F. Morgan	R. Kirkland Smith
Raja Munayirji	Alan D. Storms
Yasin I. Musa	John S. Tannery
Jeffrey H. Nelson	John Webb
Edward J. O'Donnell	Alan Wilson
	Richard P. Jackson Robert Jeanjean R. William Long Neil McCord Georges F. Montillet Anne F. Morgan Raja Munayirji Yasin I. Musa Jeffrey H. Nelson

The following members of the balloting committee voted on this standard:

Roy W. Alexander Edwin Averill Stan Billings Anne Bosma Ted Burse Carlos L. Cabrera-Rueda James F. Christensen Alexander Dixon Randall L. Dotson J. J. Dravis Denis Dufournet Douglas J. Edwards Marcel Fortin Charles G. Garner Ruben D. Garzon Mietek T. Glinkowski Keith Gray Charles R. Heising Harold L. Hess Richard P. Jackson Aftab H. Khan

Joseph L. Koepfinger P. L. Kolarik David G. Kumbera Stephen R. Lambert W. E. Laubach John G. Leach George N. Lester Albert Livshitz R. William Long Jeffrey D. Lord Neil McCord Nigel P. McQuin Peter Meyer Daleep C. Mohla Georges F. Montillet Anne F. Morgan Patrick Murphy Yasin I. Musa Jeffrey H. Nelson Paul J. Notarian

Miklos J. Orosz Gordon O. Perkins Robert J. Puckett David N. Revnolds Hugh C. Ross Gerald Sakats Gary Schauffler Larry H. Schmidt Curt A. Schwalbe Devki N. Sharma H. Melvin Smith R. Kirkland Smith Guv St. Jean David Stone Alan D. Storms David Swindler Chand Z. Tailor Stan H. Telander Malcolm V. Thaden Charles L. Wagner Larry E. Yonce

When the IEEE-SA Standards Board approved this standard on 7 December 2000, it had the following membership:

Donald N. Heirman, *Chair* **James T. Carlo,** *Vice Chair* **Judith Gorman,** *Secretary*

Satish K. Aggarwal Mark D. Bowman Gary R. Engmann Harold E. Epstein H. Landis Floyd Jay Forster* Howard M. Frazier Ruben D. Garzon James H. Gurney Richard J. Holleman Lowell G. Johnson Robert J. Kennelly Joseph L. Koepfinger* Peter H. Lips L. Bruce McClung Daleep C. Mohla James W. Moore Robert F. Munzner Ronald C. Petersen Gerald H. Peterson John B. Posey Gary S. Robinson Akio Tojo Donald W. Zipse

*Member Emeritus

Also included is the following nonvoting IEEE-SA Standards Board liaison:

Alan Cookson, *NIST Representative* Donald R. Volzka, *TAB Representative*

Yvette Ho Sang IEEE Standards Project Editor

Contents

1.	Scope	1
2.	References	2
3.	Definitions	2
4.	Purpose of monitoring	3
5.	Methodology	4
	5.1 Decision-making sequence	4
	5.2 Failure modes and effects analysis	4
	5.3 Circuit breaker failure modes, failure characteristics/patterns, and monitoring parameters	7
	5.4 Risk assessment	6
	5.5 Cost-benefit (economic) analysis	9
Annex	A (informative) Examples of circuit breaker monitoring analysis	7
Annex	B (informative) Examples of maintenance programs with and without monitoring	8
Annex	C (informative) Bibliography	.9

IEEE Guide for the Selection of Monitoring for Circuit Breakers

1. Scope

This guide provides direction for the selection of monitoring and for diagnostic parameters to be used with high-voltage circuit breakers (i.e., above 1000 V). It provides guidance on appropriate parameters to be considered for monitoring applied to various circuit breaker technologies.

This guide will lead a user through an analysis of circuit breaker performance and application expectations. The analysis includes a failure modes and effects analysis (FMEA) of the circuit breaker and associated components, an analysis of the risks associated with failure of the specific application, and a discussion of the items to be considered in a cost-benefit study to justify application of monitoring in its many forms. Monitoring is dependent on the technology of the circuit breaker and monitoring available at the time of application. FMEA as well as failure modes, effects, and criticality analysis (FMECA) are methods of reliability analysis intended to identify failures that have significant consequences affecting the system performance in the considered application.

NOTE—The examples shown are for illustrative purposes only. Numeric and financial values shown are solely for the purpose of showing that values can be assigned if so chosen. Actual circumstances will dictate values, costs, and expenses to be used in the quantifying of risk, economic evaluation and justification, and the ultimate selection of monitoring. The specific circuit breaker technology employed will also either restrict or broaden opportunities for monitoring.

This guide provides advice on what parameters can be monitored to derive information about the condition of a circuit breaker. Use of techniques, such as those in CEA Project No. 485T1049 (1997)¹, provides more information on combining appropriate signals to derive greater information than either signal alone would provide.

Circuits associated with the operation of the circuit breaker, which might include auxiliary contacts, X and Y relays, lockout switches, and so on, are included in this guide. External control circuits are not included in the scope of this guide. This guide is not intended to provide guidance on the monitoring of protection and control circuits, although they can have a significant effect on the overall circuit breaker functions.

NOTE—This guide makes no attempt to address the many possible protection and control failure modes. These failure modes are dependent on the technology of the protective devices as well as on the manner in which they are applied on the power system. This issue of the guide does not address the subject of software used in protective, control, or monitoring devices and systems.

¹Information on references can be found in Clause 2.

2. References

This guide shall be used in conjunction with the following publications. When the following publications are superseded by an approved revision, the revision shall apply.

CAN/CSA-Q634-91, Risk analysis requirements and guidelines.²

CEA Project No. 485T1049 (1997), On-line condition monitoring of substation power equipment—Utility needs.³

IEC 60812:1985-07, Analysis techniques for system reliability—Procedure for failure mode and effects analysis (FMEA).⁴

IEEE Std C37.10-1995, IEEE Guide for Diagnostics and Failure Investigation of Power Circuit Breakers.⁵

IEEE Std 493-1997, IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems (*IEEE Gold Book*TM).

NOTES

1—Appendix J and Appendix N of IEEE Std 493-1997 contain summaries of the more comprehensive documents in Annex C—Beierer et al. [B6]⁶, CIGRE [B5]⁷, CIGRE [B8], and Diagnostic techniques [B9].

2—IEEE Std 493-1997, Appendix J, "Summary of CIGRE 13.06 Working Group World Wide Reliability Data and Maintenance Cost Data on High Voltage Circuit Breakers Above 63 kV" by C. R. Heising, A. L. J. Janssen, W. Lenz, E. Columbo, and E. N. Dialynaas (*IEEE-IAS Industrial Application Conference*, October 2–5, 1994, Denver, Colorado, 94CH34520, pp. 2226–2234).

3—IEEE Std 493-1997, Appendix N, Transmission Line and Equipment Outage Data, Part 3, "Transmission Equipment Reliability Data from Canadian Electricity Association" by D. O. Koval (*IEEE Transactions on Industry Applications*, vol. 32, no. 6, Nov./Dec. 1996, pp. 1–9).

3. Definitions

For the purposes of this guide, the following terms and definitions apply. *The Authoritative Dictionary of IEEE Standards Terms* [B12] should be referenced for terms not defined in this clause.

3.1 continuous monitor: Monitoring installed for uninterrupted consecutive sampling or observing circuit breaker condition. Sampling, calculation, or processing time may not yield real-time results. Ability to monitor some characteristics may only be possible when the circuit breaker operates.

NOTE—The monitored circuit breaker can be in the energized or de-energized state, with manual, or automatic on-line, periodic, or continuous monitoring.

⁵IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA (http://standards.ieee.org/).

²CSA publications are available from the Canadian Standards Association (Standards Sales), 178 Rexdale Blvd., Etobicoke, Ontario, Canada M9W 1R3 (http://www.csa.ca/).

³CEA publications are available from Canadian Electricity Association (CEA), Research & Development, Suite 1600, One Westmount Square, Montreal, Quebec, Canada, H3Z 2P9 (http://www.canelect.ca).

⁴IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.

⁶The numbers in brackets correspond to those of the bibliography in Annex C.

⁷CIGRE publications are available from the International Council on Large Electric Systems, 21, rue d'Artois, 75008, Paris, France (http://www.cigre.org/).

3.2 diagnostic analysis: Application of tools such as artificial intelligence (including expert systems, neural nets, and fuzzy logic) to analyze the outputs from periodic or continuous monitoring. These tools may relate present or recent data to historic information. They can, however, provide engineering conclusions based on the measured values.

3.3 failure characteristic: (A) A description of the conditional probability of failure against operating age for an electrical or mechanical item; **(B)** The evolution of how a failure develops over time. *Syn:* failure pattern.

3.4 failure effect: A description of what actually happens when a failure mode occurs.

3.5 failure modes and effects analysis (FMEA): Analysis based on that defined component or subassembly level where the basic failure criteria (primary failure modes) are available. Starting from the basic element failure characteristics and the functional system structure, the FMEA determines the relationship between the element failures and the system failures, malfunctions, operational constraints, and degradation of performance or integrity. To evaluate secondary and higher-order system and subsystem failures, the sequences of events in time may also have to be considered.

NOTE—See also: IEC 60812:1985-07.

3.6 failure modes, effects, and criticality analysis (FMECA): A failure modes and effects analysis (FMEA) that also considers the criticality or risks associated with the effects of a failure.

3.7 failure pattern: See: failure characteristic.

3.8 periodic monitor: The noncontinuous, intermittent manual, or automated monitoring of circuit breaker condition at selected intervals. Periodic monitoring can be at very short, long, regular, or irregular intervals.

NOTE—The monitored circuit breaker can be in the energized or de-energized state, with manual, or automatic on-line, periodic, or continuous monitoring.

3.9 risk: The combined impact of the probability of an event occurring and the consequences of that event when it occurs.

NOTE—Failure, failure cause, monitor, catastrophic failure, major failure, mechanism failure, minor failure, failure mode, failure modes and effects analysis, and continuous monitor are defined in IEEE 100 [B12].

4. Purpose of monitoring

Monitoring can be used to

- a) Determine the condition of a specific circuit breaker
- b) Determine the condition of the circuit breaker support and control functions and facilities
- c) Optimize maintenance activity
- d) Develop an understanding of the condition of a larger population of circuit breakers in similar circumstances by examining a representative sample of the population
- e) Improve circuit breaker utilization
- f) Reduce circuit breaker failure rates
- g) Add to the circuit breaker body of knowledge available to determine the cause of failures after the fact
- h) Improve economics of equipment operation

5. Methodology

Several methodologies are introduced to assist a user with arriving at a monitoring selection based on the greatest reduction in failure rate, considering the risks of such failure and the cost benefit value introduced by the application of monitoring.

A methodology termed FMEA is presented to assist identification of significant failure modes and their causes. The concepts of risk assessment are then introduced. The subsequently derived priority and economic analysis then determines when and where monitoring is warranted.

5.1 Decision-making sequence

The process described in this guide is as follows.

Stage 1:

- a) Undertake an FMEA analysis to identify failure modes, causes of the failure modes, and causes of failure characteristics for the specific family of circuit breakers. This also indicates the most appropriate monitoring options.
- b) The FMEA identifies monitoring options that are available and appropriate to observe the condition of circuit breakers. This stage is described in the succeeding section and given in Table 2 through Table 19. The process for Stage 1(a) and Stage 1(b) would be to identify those elements in Table 2 through Table 19 that are important for the circuit breaker group in the analysis. A column is provided for adding the score from Stage 2(a) to Table 2 through Table 19.

Stage 2:

- a) Apply a risk assessment for the specific circuit breaker application. Conduct a risk assessment to quantify the risk associated with each specific circuit breaker failure mode (i.e., deterioration in functional capability or failure to functionally perform). This may indicate that monitoring should be applied almost regardless of cost. Typically, the risk assessment outcome will be used in conjunction with cost-benefit analysis. A risk matrix, as shown in Table 20, Table 21, Table 22, and Table 23, should be completed.
- b) Undertake the cost-benefit analysis as indicated in the last section and in Table 7. Annex A provides two specific examples.

Stage 3:

The decision to implement continuous or periodic monitoring may be unambiguously indicated from either risk assessment or cost-benefit analysis alone. In other cases, a balanced judgment may be more appropriate.

The process is described in the flow diagram of Figure 1.

5.2 Failure modes and effects analysis

FMEA or FMECA are methods of reliability analysis intended to identify failures that have significant consequences affecting the system performance in the considered application. See IEC 60812:1985-07.

The term *failure*, when used in the context of this guide and its companion standard IEEE Std C37.10-1995, is used to mean the "unsuccessful performance of function" regardless of cause, component, or device involved. Failure to perform the intended function(s) need not imply that the particular component failed, but that the component or system function was not satisfied. Functional failures are not necessarily caused by circuit breaker or component failure. External causes, including misapplication, should also be considered.

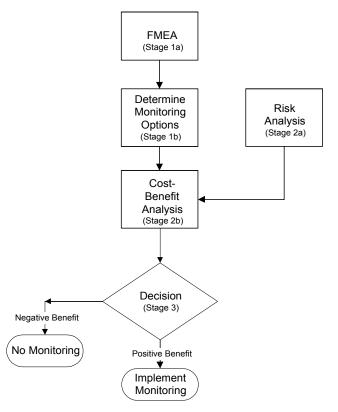


Figure 1—Monitoring decision process flow diagram

"The FMEA is based on that defined component or subassembly level where the basic failure criteria (primary failure modes) are available. Starting from the basic element failure characteristics and the functional system structure, the FMEA determines the relationship between the element failures and the system failures, malfunctions, operational constraints, and degradation of performance or integrity. To evaluate secondary and higher order system and subsystem failures, the sequences of events in time may also have to be considered" (IEC 60812:1985-07). Users of this guide are encouraged to make use of CEA Project No. 485T1049 (1997), Bierer et al. [B6], CIGRE [B5], and IEEE 100 [B12].

An FMEA is used to develop an understanding of what can fail, its effect on the functional system, and what characteristic can be monitored to observe the condition of a circuit breaker (or other devices).

This analysis derives the greatest value from being performed on a system basis rather than on a component basis. In this discussion, a power circuit breaker is considered a system. The circuit breaker becomes a component when applied in an electric power grid (system).

A description of circuit breaker functions leads to identification of failure modes. "A failure mode is the effect by which a failure is observed" (IEC 60812:1985-07). Failure causes for various technologies of circuit breakers can then be listed for each failure mode (IEEE Std C37.10-1995). The effect of each failure mode can be developed, and the criticality or risk associated with each of the failure modes can then be analyzed. The "effect" is what happens to the circuit breaker when the failure cause manifests as a failure mode. The effect is the same for each circuit breaker, even though what happens to facilities (i.e., consequences) connected to the circuit might be different for each specific application.

The evolution of how a failure develops over time is known as the failure characteristic. Failures can occur very suddenly or over a long period of time. Failure characteristics vary with the types of devices and the physics and chemistry of the failure mechanism. For example, some known failure characteristics are shown in Table 1.

Table 1—Failure characteristics or patterns showing failure rate versus various parameters

a) Infant mortality followed by a constant or gradually increasing failure rate and then a pronounced "wear- out" region ("bathtub curve")	t
b) Constant or gradually increasing failure rate with time followed by a pronounced wear-out region	t
c) Gradually increasing failure rate with no identifiable wear-out region	t
d) Low failure rate when new or overhauled, followed by a rapid increase to a relatively constant level	t
e) Relatively constant rate of failure at all ages	t
f) Infant mortality followed by a constant or slowly increasing failure rate	t
g) Failure rate associated with inactivity (failure caused because the circuit breaker is inactive for some time since the last operation), overloading or system stresses while in service, or environmental factors (e.g., corrosion)	time since last operation
h) Load-related failure rates (e.g., higher or lower loading causes increased failure rate)	load
i) Random failure rates	
j) Increased failure rate immediately after maintenance and then returning to one of the above patterns	
k) Decreased failure rate immediately after maintenance and then returning to one of the above patterns	

A more detailed understanding of the failure characteristic or pattern is important when selecting monitoring. Monitoring is more beneficial during circuit breaker life periods of higher expected failure probability and may be less beneficial during periods of anticipated lower failure rate. The failure pattern should be considered when using Table 2 to select monitoring.

Generally, more appropriate monitoring can be selected if the failure cause characteristic can be understood. Similarly, more appropriate maintenance may also be applied with this understanding. An example is reliability-centered maintenance where maintenance tasks are selected to prevent functional failure causes that are associated with higher risks. Reliability-centered maintenance analyzes failure modes and their effects on function and then assigns maintenance activity directly related to reducing the failures that are deemed most important. An understanding of failure characteristics also allows predictions to be made on the number of expected failures for future years. The accuracy of the predictive model is dependent on the volume of high-quality data and the use of the proper forecasting technique. It is recommended that the user acquire as much relevant data from sources such as IEEE, CIGRE, CEA, and other industry sources so that the predictions can be as accurate as possible. Application of this data with algorithms based on the failure cause produces future failure projections that can be significant when used in cost justification for the purchase of monitoring equipment.

A rigorous analysis might identify all of the circuit breaker functions and their failure modes, whereas a lessextensive analysis could concentrate on the predominant failure modes only. In many (but not all) cases, these predominant failure modes could cover most of the circuit breaker reliability concerns with significantly less effort.

A more complete FMECA can classify all "identified failure modes according to their detectability, diagnosability, testability, item replaceability, compensating and operating provisions (repair, maintenance and logistics, etc.) and any other relevant characteristics" (IEC 60812:1985-07).

5.3 Circuit breaker failure modes, failure characteristics/patterns, and monitoring parameters

Table 2 through Table 19⁸ identify several failure modes, possible effects, and some causes of the failure, with speculation on the failure characteristic and monitoring options.

The FMEA may be applicable to the entire circuit breaker or to individual poles of a circuit breaker. There is a benefit to a broad-based view in developing the FMEA. The circuit breaker is generally installed as part of an integrated system. Many external situations and circumstances are beyond the control or awareness of the circuit breaker manufacturer or application engineer and can have an impact on the circuit breaker functional performance.

Monitoring options can be applied on a continuous or periodic on-line basis, or on a periodic manual basis.

⁸The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

Failure mode	Failure effect	Failure cause	Failure characteristic	Monitoring options	User score
* Failure modes in bold font and indicated with an asterisk are predominant failure modes, i.e., this failure mode covers most cases. Failure modes indented below those with an asterisk are a subset of the predominant failure modes.	This column describes what can happen when the failure mode occurs, i.e., the effect by which a failure is observed.	This column describes the possible causes of the failure mode.	This column suggests the developing characteristic of the failure cause, i.e., the manner over time in which the failure develops.	This column offers monitoring options. Monitoring may be implemented as continuous or periodic on-line, periodic off-line, or periodic manual monitoring. The breaker may be in the energized or de-energized state.	Enter a user score from 5.1, Stage 2(a).
^a The IEEE grants pu	urchasers of this material	permission to conv Table 2. Table 3. Table 4. Ta	^a rthe IEEE grants nurchasers of this material nermission to conv Table 2. Table 3. Table 6. Table 6. Table 8. Table 8. Table 9. Table 10. Table 12. Table 13. Table 14. Table 15. Table	10 Tahle 11 Tahle 12 Tahle 13 Tahle 14 Tah	e 15 Tahle

Table 2—Generic listing of circuit breaker FMEA, failure characteristics, and monitoring options^a

ĥ ^aThe IEEE grants purchasers of this material permission to copy Table 3, Table 4, Table 5, Table 6, Table 6, Table 9, Table 9, Table 11, Table 11, Table 12, Table 13, Table 14, Table 14, Table 17, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material. Table 3—Generic listing of circuit breaker FMEA: Circuit breaker fails to open on command ^a

Failure mode	Failure effect	Failure cause	Failure characteristic	Monitoring options	User score
Fails to open on command *	Breaker does not open the circuit to	Open or shorted trip coil	Fails suddenly without advanced indication	Monitor trip coil continuity or impedance	
:		Inappropriate or inadequate lubrication of trip latch or trip mechanism	Operating time of trip latch may increase over time Energy to trip latch may increase over time	Monitor trip coil energy consumed or current and voltage drop during time for circuit breaker to operate, or monitor the time for the circuit breaker to operate	
		Loss of stored interrupting energy due to leaks, slippage, and breakage	Pneumatic- and hydraulic-actuated mechanisms generally lose energy over at least several minutes	Monitor stored energy pressure or position of stored energy springs	
			Spring-actuated mechanisms may suddenly fail or may have less sudden loss of energy		
		Control circuit failure	Control circuits generally fail suddenly. Auxiliary contacts generally change relationship with the main contacts; gradually, however, they may also suddenly fail	Monitor control circuit continuity and dc voltage at circuit breaker and controls Monitor trip coil current and auxiliary contact timing (on noncurrent carrving contact)	
				Periodic insulation testing	

Table 3—Generic listing of circuit breaker FMEA: Circuit breaker fails to open on command *(continued)*^a

IEEE

Std 37.10.1-2000

Failure mode	Failure effect	Failure cause	Failure characteristic	Monitoring options	User score
Fails to open on command *	Breaker does not open the circuit to	Circuit breaker operation blocked	Legitimate blocking caused by loss of circuit breaker function	Self-monitoring and self-alarming of monitoring scheme	
	merupt current		Incorrect blocking caused by monitoring or alarm failure, incorrect settings, or operation of initiating transducers	Trending of monitored parameters	
		Mechanism linkage failure between operating mechanism and interrupters	Generally, linkages either go out of adjustment over a number of operations or break suddenly during an operation	Monitor primary current interruption during change of state of operating mechanism Monitor timing sequence between operating mechanism and interruption	
		Trip latch surface wear, deteriorated bearings, or deformation of trip latch flat surfaces	Operating time of trip latch may increase over time Energy to trip latch may increase over time	Monitor trip coil energy (current and voltage drop) and time for circuit breaker to operate	
		Mechanism cabinet below required temperature	Probable lowering temperature over several hours	Monitor mechanism temperature or mechanism heater current and ambient temperature	
		External circuit failure, including wiring, battery, and protection devices	Slowly over time or failure only apparent with attempted operation	Monitor station battery voltage at circuit breaker, continuity of trip circuitty, self-monitoring of electronic primary and backup protection devices	
^a The IEEE grants pu 16, Table 17, Table	urchasers of this material e 18, and Table 19 for the	The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material	ble 5, Table 6, Table 7, Table 8, Table 9, Table opies to be shared or sold by purchaser. The IE	^a The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 6, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.	15, Table

Table 4—Generic listing of circuit breaker FMEA: Circuit breaker opens, but fails to remain open^a

Failure mode	Failure effect	Failure cause	Failure characteristic	Monitoring options	User score
Opens but fails to remain open	Circuit breaker opens and then closes again	Mechanism failure, loss of 'fold open" energy (e.g., loss of air pressure on air blast circuit breaker requiring air pressure to hold contacts open)	Gradual failure of X or Y relay timing resulting in sudden "pumping" of circuit breaker	Monitor mechanism position and auxiliary contacts with respect to current flow and opening signal	
	Circuit breaker opens and then repeatedly closes and opens	Failure of antipumping scheme	Usually fails as part of the opening operation. May not fail with every opening operation	Monitor number of operations over time period Monitor X and Y relay timing	

^aThe IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material. Table 5—Generic listing of circuit breaker FMEA: Circuit breaker opens, but fails to interrupt ^a

Failure mode	Failure effect	Failure cause	Failure characteristic	Monitoring options	User score
Opens but fails to	Fault or load	Oil contamination	Slowly over time	Oil dielectric	
interrupt	interrupted, and the circuit breaker interrupter has a	Low gas pressure or density (air or SF_6)	Slowly over time	Gas pressure or density as appropriate for ambient temperature	
	major failure	Loss of vacuum	Instantaneous or gradual	Periodic vacuum integrity overpotential test	
		Insufficient contact opening	Instantaneous or gradual	Monitor contact travel	
		Arc chute failure	Slow or sudden mechanical failure, heater failure, contamination, or connection failure	Visual inspection, partial discharge monitor, and heater or temperature monitor	
		Puffer failure	Slow or sudden		
		Mechanical failure	Slow or sudden	Monitor mechanism position and auxiliary contacts with respect to current flow and opening signal	
		Misapplication or other situation beyond circuit breaker capability	Developing system generally changes with reconfigured system or new switching duty	Monitor system fault level and conditions, especially during short circuit interruption and breaker operation	
			Interruption under improper system application conditions	Periodic review of system fault levels	
				Power system disturbance recorder (including oscillographs and digital fault recorders)	
^a The IEEE grants pu	urchasers of this material	permission to copy Table 2, Table 3, Table 4, Ta	ble 5, Table 6, Table 7, Table 8, Table 9, Table 1	^a The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table	15, Table

16. Table 17, Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

B
, D
atio
n
ns
й.
tac
, in o
oen co
en
g
ain opei
nta
ai
E
Ę
ails to n
fa
but
ens
ð
ŝr o
äk
re
t b
ŭ
Ĭ
Ч
FMEA
ř
ake
reâ
t b
ü
i.
Ę.
g of circuit
Ĩ
ist
<u>0</u>
ler
en
Ŷ
6
ole
Tab
-

cuum n does not travel complete s pressure operations in a time period stress exceeds the circuit	Failure mode	effect	Failure cause	Failure characteristics	Monitoring options	User score
of contacts immediately after the opening operation Too many operations in a time period Dielectric stress exceeds the circuit breaker t capability			ss of vacuum	Instantaneous or gradual	Periodic vacuum-integrity overpotential test	
Loss of gas pressure Too many operations in a time period Dielectric stress exceeds the circuit breaker capability			echanism does not travel complete stance	Out of adjustment because of excessive operations, or else, it jams and breaks suddenly	Full travel indication	
operations in a time period stress exceeds the circuit		Lo	ss of gas pressure	Instantaneous or gradual	Gas pressure monitor	
Dielectric stress exceeds the circuit breaker capability		To	o many operations in a time period	Slowly over time	Monitor number of operations over time period	
T inditional		Dia bre car	electric stress exceeds the circuit eaker pability		Monitor system voltage conditions, especially during short circuit interruption and breaker operation	
Summari		Lię	Lightning			

ic LJ, 3 1 ne LEEE grants purchasers of this material permission to copy 1 able 2, 1 able 2, 1 able 5, 1 able 6, 1 able 6, 1 able 8, 1 able 8, 1 able 10, 1 able 11, 1 able 11, 1 able 12, 1 able 12, 1 able 14, 15 Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material. Table 7—Generic listing of circuit breaker FMEA: Circuit breaker opens without command^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Opens without command	Circuit is unintentionally	Trip latch not secure	Slowly over time	Change in current over time or change in speed to trip	
	possible safety and economic damage issues	Stray current in trip circuit (such as from transients, caused by switching surges on adjacent wiring)	Short circuit in some location of the circuit breaker control wiring causing current to flow in the trip coil	Monitor current in trip coil	
		Ground on trip circuit	Inadvertent ground on trip circuit	Monitor trip circuit for grounds	
		Self-protective feature of some circuit breakers (some airblast breakers)	Usually gradual loss of pressure	Monitor trend in operating stored energy	
		Loss of voltage on undervoltage trip		Monitor voltage in undervoltage trip supply circuit	
^a The IEEE grants pu	urchasers of this material	^a The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 6, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table	ible 5, Table 6, Table 7, Table 8, Table 9, Table	10, Table 11, Table 12, Table 13, Table 14, Table	le 15, Table

16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

Table 8—Generic listing of circuit breaker FMEA: Circuit breaker fails to close on command^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Fails to close on command*	Breaker does not close the circuit to conduct current	Defective close coil or solenoid	Fails suddenly without advanced indication	Monitor close coil circuit for possible increase in close current, or monitor closing time	
		Loss of stored energy	Can be quick or slow over time	Monitor spring position, air pressure	
		Inappropriate lubrication	Fails gradually and may be activity related	Monitor timing between main contacts and close coil current	
		Control circuit failure	Sudden or gradual	Monitor control circuit	
				Monitor close coil current and auxiliary contact timing (on non- current-carrying contact)	
^a The IEEE grants pu 16, Table 17, Table	urchasers of this material l e 18, and Table 19 for thei	The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.	ble 5, Table 6, Table 7, Table 9, Table 9, Table pies to be shared or sold by purchaser. The IE	^a The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.	e 15, Table

Table 9—Generic listing of circuit breaker FMEA: Circuit breaker closes, but fails to conduct current^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Closes but fails to conduct current	Breaker does not close the circuit to conduct current in one or more poles	Contacts burnt away (electrically eroded)	Contacts eroded after interrupting beyond duty fault	Power system disturbance recorder (including oscillographs and digital fault recorders) in primary current circuit	
		Mechanical linkage to contacts broken	Linkage breaks after last operation or during closing operation	Monitor primary current start during change of state of operating mechanism	
		Loss of overtravel preventing full contact closing	Contact arcing and erosion	Monitor contact travel and over travel	

⁴The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

Table 10—Generic listing of circuit breaker FMEA: Circuit breaker closes without command^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options s	User score
Closes without command	Circuit is unintentionally closed with	Stray current in close circuit (such as from transients caused by switching surges on adjacent wiring)	Short circuit in some location of the circuit breaker control wiring causing current to flow in the close coil	Current in close coil	
	economic damage issues	Ground on close circuit	Inadvertent ground on close circuit	Monitor close circuit for grounds	
		Pilot valve not secure	Air leakage or pilot valve not holding	Air pressure leaving pilot valve; monitor air compressor run time and pressure	
		Spring release mechanism worn	Wears slowly over time to point where it does not hold securely	Movement of release mechanism	
		Vibration of circuit breaker	Usually sudden failure	Improper application or vibration isolation	
^a The IEEE grants pu 16, Table 17, Table	rrchasers of this material e 18, and Table 19 for the	permission to copy Table 2, Table 3, Table 4, Ta ir use only. Under no circumstances are these c	The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 6, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material	^a The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 8, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 15, Table 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.	15, Table

Table 11—Generic listing of circuit breaker FMEA: Circuit breaker fails to conduct continuous or momentary current (while already closed)^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Fails to conduct	Breaker does not conduct current	High-resistance contacts	Gradual increase in contact resistance during operation	Infrared monitoring of contact temperature	
continuous of momentary current (while	thermal damage to contact assemblies	Ablation of contacts	Gradual increase in contact resistance during operation	Infrared monitoring of contact temperature	
already closed)		Broken or missing contacts; parts in current carrying circuit; bolted joints, sliding, rolling, or moving main contacts; spring failure	Increase in contact resistance with damaged continuous current carrying contact assembly	Infrared monitoring of contact temperature	
		Loss of over travel and contact closing force	Gradual or relatively sudden failure	Infrared monitoring of contact and connection and temperature	
^a The IEEE grants pu	The IEEE grants purchasers of this material permission to cop	permission to copy Table 2, Table 3, Table 4, Ta	ble 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11	^a The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 6, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table	e 15, Table

16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

Table 12—Generic listing of circuit breaker FMEA: Circuit breaker fails to provide insulation^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Fails to provide	Short circuit on	Loss of dielectric medium	Gradual leakage rate over time	Gas pressure or density	
insulation *	unintentional			Fluid level	
	components	Loss of dielectric integrity of oil	Gradual leakage rate over time	Periodic test of oil condition	
		Loss of vacuum	Sudden or rapid	Periodic vacuum-integrity overpotential test	
		Moisture in SF ₆ gas	Gradual	Monitor SF ₆ density and moisture	
		Loss of compressed air dielectric	Gradual increase in compressed air dew point, relative humidity, or ppm water content	Monitor compressed air water content and temperature or relative humidity of compressed air	
			Sudden mechanical damage to interrupter envelope	Trend periodic insulation resistance and dielectric tests	
		Damaged interrupter from external acts		Station security monitor	
		Excessive accumulated interrupted amperes	Gradual	Monitor interrupted amperes and breaker operations	
		Wear-generated particles in interrupter	Gradual	Monitor partial discharge?	
^a The IEEE grants pu	urchasers of this material	^a The IEEE grants nurchasers of this material nermission to conv Table 2. Table 3. Table 4. Table 6. Table 7. Table 8. Table 9. Table 11. Table 12. Table 13. Table 14. Table 15. Table	ble 5. Table 6. Table 7. Table 8. Table 9. Table	10 Tahle 11 Tahle 12 Tahle 13 Tahle 14 Tahle	15 Table

16. Table 17, Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

Table 13—Generic listing of circuit breaker FMEA: Circuit breaker fails to provide insulation to ground^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User
				D	score
Fails to	Phase-to-ground	Wildlife contact	Immediate on contact	-	
provide insulation to ground	system with system with nossible safety and	Lightning strike	Instantaneous	1	
0	economic damage; interruption	Mechanical damage to insulation	Gradual or sudden	1	
	required to power system	Water infiltration	Immediate on path		
		Contaminated bushings	Immediate on path	Ι	
		Flashover caused by system transient event	Sudden failure, but synchronized with power system transient event	Power system disturbance recorder (including oscillographs and digital fault recorders)	
		Excessive temperatures of insulating materials	Slow	Monitor ambient air or component temperature(s)	
art trr	- Leinet and a second				

The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 5, Table 6, Table 6, Table 8, Table 9, Table 9, Table 11, Table 12, Table 13, Table 14, Table 15, Table 15, Table 15, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

o ^a
ase
bh
een
etw
d no
latic
nsu
de i
rovi
to p
uils t
er fa
eak
t br
rcui
C.
FMEA: Ci
jr Fl
eake
t bre
rcui
of ci
ng o
listi
eric I
Gen
Į
le 1.
Table

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Fails to	Phase-to-phase	Wildlife contact	Immediate on contact	-	
insulation between	system with power possible safety and	Lightning strike	Instantaneous	Ι	
phases	interruption required to power system	Ionization of surrounding insulating air caused by unusual service conditions	Instantaneous	Partial discharge monitoring	
	components	Water infiltration	Immediate on path	Partial discharge monitoring	
		Foreign material	Immediate on path	Partial discharge monitoring	

^aThe IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

Table 15—Generic listing of circuit breaker FMEA: Circuit breaker fails to provide insulation across the interrupter—external^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Fails to	Circuit is	Wildlife contact	Immediate on contact		
insulation across the	closed with	Lightning strike	Instantaneous		
interrupter	economic damage issues; may result in a major failure	Water infiltration	Usually slowly, however, immediate failure on establishing leakage path		
	of circuit breaker interrupter	Ionization of air during over duty fault	Instantaneous	System monitoring	
		Excessive voltage applied to breaker	Usually quickly	System monitoring	
		Dirt or pollution	Gradual		
		Deterioration of interrupter exterior surfaces caused by partial discharge	Gradual	Monitor partial discharge activity	
		Flashover of OPEN interrupter caused by system transient event	Suddenly but synchronized with power system transient event	Power system disturbance recorder	
		Ionization of surrounding insulating air caused by unusual service conditions	Instantaneous	Partial discharge monitoring	
^a The IEEE grants pu 16, Table 17, Table	urchasers of this material e 18, and Table 19 for the	The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material	ble 5, Table 6, Table 7, Table 8, Table 9, Table pries to be shared or sold by purchaser. The IE	^a The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.	15, Table

					,
Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options 50	User score
Fails to	Circuit is	Loss of dielectric density	Gradual over time	Gas density	
insulation across the interrunter—	closed with possible safety and economic damage	Loss of dielectric integrity of oil	Gradual over time	Periodic test of oil condition	
internal	issues; major failure of circuit breaker interrupter	Loss of vacuum	Usually sudden or rarely gradual	Periodic vacuum integrity overpotential test	
		Excessive voltage applied to breaker	Gradual or sudden	System monitoring	
^a The IEEE grants pi 16, Table 17, Tabl	The IEEE grants purchasers of this material permission to cc 16, Table 17, Table 18, and Table 19 for their use only. Und	permission to copy Table 2, Table 3, Table 4, Table 4, Table 1, Table 2, Ta	py Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, er no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material	^a The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.	15, Table

Table 16—Generic listing of circuit breaker FMEA: Circuit breaker fails to provide insulation across the interrupter—internal^a

Table 17—Generic listing of circuit breaker FMEA: Circuit breaker fails to contain insulating medium^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Fails to contain insulating medium *	Loss of insulating medium to environment (see also insulation failure effects)	Failure of seals, gaskets, corrosion, erosion, and porcelain rupture disk	Generally slowly over time but can be Monitor insulating medium level (liquids), density (SF ₆), or pressu (air blast)	Monitor insulating medium level (liquids), density (SF ₆), or pressure (air blast)	

The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 5, Table 6, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 15, Table 17, Table 11, Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

-
~~~
2
<u>.</u>
ï
S
0
ă
2
0
ō
. <u> </u>
liti
σ
<b>_</b>
ō
ŏ
e
<u></u>
- 22
ĭ₩
σ
L
0
Ţ
ŝ
E
Ľ,
5
ē
ž
ß
ð
<u> </u>
2
÷
1
0
<u> </u>
<u>ц</u> .
Ċ
 Cir
A: Cir
EA: Cir
IEA: Cir
MEA: Cir
FMEA: Cir
er FMEA: Cir
ker FMEA: Cir
aker FMEA: Cir
∋aker FMEA: Cir
reaker FMEA: Cir
breaker FMEA: Cir
t breaker FMEA: Cir
it breaker FMEA: Cir
uit breaker FMEA: Cir
cuit breaker FMEA: Cir
ircuit breaker FMEA: Cir
circuit breaker FMEA: Cir
f circuit breaker FMEA: Cir
of circuit breaker FMEA: Cir
l of circuit breaker FMEA: Cir
g of circuit breaker FMEA: Cir
ng of circuit breaker FMEA: Cir
ting of circuit breaker FMEA: Cir
sting of circuit breaker FMEA: Cir
listing of circuit breaker FMEA: Cir
c listing of circuit breaker FMEA: Cir
ic listing of circuit breaker FMEA: Cir
eric listing of circuit breaker FMEA: Cir
neric listing of circuit breaker FMEA: Cir
meric listing of circuit breaker FMEA: Cir
teneric listing of circuit breaker FMEA: Cir
Generic listing of circuit breaker FMEA: Cir
-Generic listing of circuit breaker FMEA: Cir
Generic listing of circuit breaker FMEA: Cir
8—Generic listing of circuit breaker FMEA: Cir
18—Generic listing of circuit breaker FMEA: Cir
e 18—Generic listing of circuit breaker FMEA: Cir
ole 18—Generic listing of circuit breaker FMEA: Cir
hble 18—Generic listing of circuit breaker FMEA: Cir
able 18—Generic listing of circuit breaker FM
Table 18—Generic listing of circuit breaker FMEA: Cir

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Fails to indicate condition or position *	Operation of power system with a circuit breaker that is incapable or has reduced capacity to perform its functions	Failure of insulation gas density switch	Gauge indication becomes stuck	Monitor gas density variation as ambient temperature cycles to ensure density variation is appropriate	
	Defective closed, opened, or stored energy indicator, causing operator	Stuck, broken, or defective indicator	Generally, during a single operation; could be gradual mechanical deterioration over time	Monitor indication with signal to open and close circuit, primary current, control circuit current, and stored energy charging system operation	
	inappropriate actions	Auxiliary contacts, linkage, or wiring	Possible erratic operation; may be sudden	Monitor indication with signal to open and close circuit, primary current, control circuit current, and stored energy charging system operation	

ladie 10, ladie Increte grants purchasers of this material permission to copy rapie 2, rapie 2, rapie 3, rapie 9, rapie 9, rapie 10, rapie 11, rapie 11, rapie 12, rapie 12, rapie 14, 16, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material. Table 19—Generic listing of circuit breaker FMEA: Circuit breaker fails to provide safety in operation^a

Failure mode	Failure effect	Failure cause	Failure characteristics	Monitoring options	User score
Fails to provide for safety in	Hazard to personnel	Overpressure of porcelain interrupter Defects in porcelain	Sudden failure of pressure regulator supplying high-pressure air to interrupter chamber	Pressure relief valve monitoring	
		Overpressure of pneumatic or hydraulic fluids, spring charging system	Sudden failure of charged energy control device	Monitor circuit breaker stored energy device condition remotely	
		Failure of interlocks	Sudden or over time	Monitor indication with signal to open and close circuit, primary current, control circuit current, and stored energy charging system operation	
		Loss of gas and need to isolate	Sudden or over time	Monitor gas pressure/density	
		Improper filling or adding liquid versus gas dielectric medium		Monitor gas pressure/density	
^a The IEEE grants pu	irchasers of this material	^a The IEEE grants purchasers of this material permission to copy Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table	ble 5, Table 6, Table 7, Table 8, Table 9, Table	10, Table 11, Table 12, Table 13, Table 14, Table	e 15, Table

ć aU Incluber grants purchasers of this material permission to copy lable 3, lable 4, lable 5, lable 6, lable 6, lable 8, lable 9, lable 10, lable 11, lable 12, lable 13, lable 14, 16, Table 17, Table 18, and Table 19 for their use only. Under no circumstances are these copies to be shared or sold by purchaser. The IEEE reserves all other rights to the material.

## NOTES

1—Table 2 through Table 19 are only representative FMEA charts. They are not complete for every circuit breaker and may not include all issues of importance to the user. The end user should consider many factors, including, as an example, the fault level at the circuit breaker compared with the circuit breaker interrupting rating and the consequence to the circuit breaker owner as well as to downstream customers.

2—These tables are a generic listing of circuit breaker failure modes, failure effects, failure causes, failure characteristics, and some monitoring options that are available. The listing is comprehensive, although there may be others that were either not identified at the time this guide was produced or that are applicable to new circuit breakers developed after this guide was developed.

3—Failure modes in bold font and indicated with an asterisk (*) are considered as predominant failure modes in this example analysis. Predominant failure modes can sometimes be considered to include most of the likely failure modes. A more rigorous FMEA would include all failure modes, whereas a less rigorous analysis including predominant failure modes only may be judged adequate for some situations.

4—For the convenience of users of this guide, a column has been added to score the relative importance of each monitoring option for the users' specific circumstances.

5—These tables attempt to establish correspondence among failure cause, failure characteristic, and monitoring option.

5—Be aware that a failure cause might have occurred during a previous operation and may not be apparent until the subsequent operation is requested.

6—Monitoring an action or characteristic may yield information that is not necessarily directly related to the root cause of a failure.

7—This guide makes no attempt to address the many possible protection and control failure modes. These failure modes are dependent on the technology of the protective devices, as well as on the manner in which they are applied to the power system. Similarly, this guide does not address the issue of software used in protective, control, or monitoring devices and systems.

# 5.4 Risk assessment

After the effect of a failure is determined, the criticality or risk associated with that effect should be assessed. The risk assessment quantifies the importance of each failure effect (CAN/CSA-Q634-91).

Risk is formed from two factors: the probability of any event occurring and its consequence. Risk is high when an event is likely to occur, and it has serious results. Risk can be moderate if the probability is low and the consequences are high, when both are medium, or when the probability is high and consequences are low. Risk is low if both probability and consequences are low.

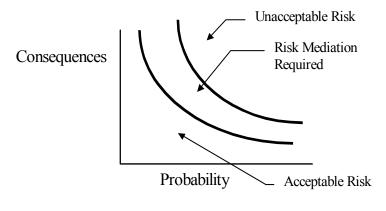

By evaluating the probability of an event happening and developing an idea of how serious the situation might be if it occurs, risk can be evaluated. High-risk items generally require action be taken to reduce the risk, whereas low-risk items may not need to have any action taken. In this assessment, action to be taken is implementation of condition monitoring, whereas in the area of maintenance, selection of appropriate maintenance tasks is undertaken. Obviously, manufacturers make these assessments based on the knowledge they have regarding the circuit breaker design and manufacture. The end user has application information not available to manufacturers and, therefore, is in a position to conduct an assessment appropriate to each situation.

Table 20 can be used to help quantify risk. Determine the level of probability that an event can occur and the consequences if that event does happen (regardless of how often it happens) to develop the level of risk that should be recognized. Consequences and probabilities can be quantified in the areas of financial impact as well as in the areas of safety, environmental, public, employee, or regulatory impact [CEA Project No. 485T1049 (1997) and CAN/CSA-Q634-91]. A complete analysis would consider the consequences and probabilities associated with risk in each of the areas of financial, safety, environmental, public, employee, or regulatory impact; and other areas of risk appropriate to the specific installation.

# Table 20—Risk matrix

Risk matrix					
(Risk = probability of an event occurring $\times$ consequences if that event occurs)					
Consequence of an event occurring					
Probability that	I	П	ш	IV	
an event will occur	Catastrophic	Major	Moderate	Negligible	
1 - Frequent	А	А	В	В	
2 - Occasional	А	А	В	С	
3 - Infrequent	В	В	С	D	
4 - Improbable	В	С	D	D	
NOTE—Multiply chance of an event occurring times the consequence to obtain predicted risk.					

Another way of viewing risk is illustrated in Figure 2..



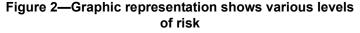



Table 21 lists EXAMPLES only of how consequence and probability might be quantified. The consequence example uses a financial consequence. Other examples might include safety, environment, or public relations descriptions.

The examples shown are for illustrative purposes only. Numeric financial values and consequential descriptions are strictly for the purpose of showing that values can be assigned if so chosen. Actual circumstances can dictate values, costs, and expenses to be used in the quantifying of risk, economic evaluation and justification, and the ultimate selection of monitoring. The specific circuit breaker technology employed can also either restrict or broaden opportunities for monitoring.

Rank	Level of risk or criticality	
А	Highest risk, unacceptable, immediate action required to reduce risk	
В	Major risk, not desirable, moderate action required to reduce risk	
С	Moderate risk, acceptable with controls to mitigate risk	
D	Minimal risk, acceptable risk without mitigating action	

# Table 21—Risk or criticality ranking: Example

The examples of consequences shown in Table 22 are described in terms of financial, safety, and environmental consequences. These are examples for illustrative purposes only and should be customized for the specific circumstances. A user should insert values specific to their situation.

NOTE—The suggested process is for the user to identify and assess the importance to their enterprise and customers of the various levels of consequence for an event.

The examples shown in Table 23 are for illustrative purposes only. Numeric probability values are strictly for the purpose of showing that values can be assigned if so chosen. Actual circumstances can dictate probabilities to be used in the quantifying of risk, economic evaluation and justification, and the ultimate selection of monitoring. The specific circuit breaker technology employed may result in probabilities specific to that technology. These are examples for illustrative purposes only, they may not be appropriately grouped, and they should be customized for the specific circumstances.

Several sources of failure probability are listed in IEEE Std 493-1997, Beierer et al. [B6], CEA [B2], CIGRE [B5], CIGRE [B8], Diagnostic techniques [B9], and IEEE 100 [B12]. Table 23 has illustrative values for the sole purpose of assisting a user in ranking probabilities for use in quantifying risk. The probabilities identified in each level of probability are not equivalent and are intended only as a means of describing relative probability.

Such analysis can be done for each user of the technique, applying knowledge of probabilities and consequences suitable to the user's specific circumstances. As an example, only consider the case in which a circuit breaker is called on to operate 5 times per year and has a probability of failure to operate of 1 in 200 operations or a 0.5% failure rate. If the consequence of this specific failure to operate is expected to be  $$50\ 000$  for all costs, including those of the utility and its customers, the expected annual cost of failure is  $0.005 \times 5 \times $50\ 000 = $1,250$ .

Selection of monitoring might well be made on an FMEA and risk management basis only. It is also important to consider consequences in areas other than the financial example provided. Other areas, which may have significant importance to the user, are the environment, customer relations, legal or regulatory effect, safety, or customer power quality.

Six valuable sources of information for circuit breaker performance data are given in Beierer et al. [B6], CEA [B2], CIGRE [B5], CIGRE [B8], Diagnostic techniques [B9], and IEEE 100 [B12].

The expected cost of a loss is used to evaluate possible mitigation efforts, such as installing on-line monitoring of selected circuit breakers. The expected loss with and without on-line monitoring is one of the factors to be considered in the economic analysis.

# Table 22—Description of consequences: Example

**Consequence of an event occurring** (Financial, safety, and environmental examples are illustrated for example only. Additional areas of consequence could include social, regulatory, legal, public reputation, and political impact. Each user will have specific criteria for these areas of consequence.)

### I-Catastrophic

Financial and facility costs or exposure threatens the long-term survival of the organization. Any long-term impact on share value.

Fatalities (as a direct result) or serious long-term health impact on

- The public
- Employees
- Contractors

An incident that causes long-term harm (x years or more). Ecological damage that endangers ecological processes or significant harm to humans.

## II—Major

Financial and facility costs or exposure cause a major impact on the organization. Any long-term impact on share value.

Permanent impairment or serious injury or illness.

An incident that causes significant ecological damage that can be controlled and lasts up to x years.

## III-Moderate

Financial and facility costs or exposure cause a moderate impact on the organization. Any short-term impact on share value.

Recordable injury (restricted work, medical aid).

An incident that causes noticeable but repairable damage, but where technology exists to mitigate the ecological damage over time.

# IV—Negligible

Financial and facility costs or exposure cause a minor impact on the organization.

Minor injury / illness (first aid).

An incident that causes short-term minor ecological impacts that can be repaired quickly or through natural processes.

# 5.5 Cost-benefit (economic) analysis

The following section describes some of the elements that might be included when developing a business case tailored to a specific situation. It is important to recognize that the examples are for illustrative purposes only. Numeric financial values are strictly for the purpose of showing that values can be assigned, if so chosen. Actual circumstances can dictate values, costs, and expenses to be used in the quantifying of risk, economic evaluation and justification, and the ultimate selection of monitoring. The specific circuit breaker technology employed can also either restrict or broaden opportunities for monitoring.

# Table 23—Descriptions of probabilities: Example

Probability of an event occurring		
1—Frequent (possibility of repeated incidents)		
Current conditions indicate repeated future occurrences are possible for the system.		
Average probability of occurrences about 30% per year, with 9 occurrences likely in 30 years.		
Lowest probability greater than 10% per year.		
1 to 3 misoperations in 10 operations.		
2-Occasional (possibility of isolated incidents)		
Current conditions indicate isolated future occurrences are possible for the system.		
Average probability of occurrence about 3% per year, with 1 occurrence likely in 30 years.		
Lowest probability 1–10% per year.		
1 misoperation in 30 operations.		
3—Infrequent (possibility of occurring sometime)		
Current conditions indicate occasional future occurrences are possible for the system.		
Average probability of occurrence about 0.3% per year, with 1 occurrence likely in 30 years out of 10 similar systems.		
Lowest probability 0.1–1% per year.		
4—Improbable (not likely to occur)		
Current conditions indicate only isolated future occurrences are likely for the system.		
Average probability of occurrence about 0.03% per year, with 1 occurrence likely in 30 years out of 100 similar systems.		
Lowest probability 0.01–0.1% per year.		

This section is intended to help the users and owners of switchgear equipment consider and justify the implementation of monitoring and diagnostics programs based on the analysis of costs and benefits. The costs referred to in the risk assessment process are defined in greater detail, and the benefit of monitoring is compared to the nonmonitored situation. Economic analysis should consider direct and indirect costs and benefits. Use of a spreadsheet can assist in understanding the sensitivity of the business case to assumptions made during the analysis.

Costs are incurred in the operation, inspection, maintenance, and restoration of failed substation power equipment. One of the goals of monitoring and diagnostics schemes is to reduce these costs by more thorough inspections, more appropriate maintenance tasks and maintenance intervals, and lower failure rates. Monitoring is justifiable if a net benefit results from its application. It is prudent to review over time the benefits intended to be achieved with the benefits actually achieved and the costs incurred. The cost of monitoring should be related to equipment cost and its importance. The analysis of costs and benefits is to facilitate better business decisions around operation, maintenance, utilization, and retirement of equipment. No monitoring scheme should be implemented without a supporting, full cost-benefit analysis, which includes much more than direct costs.

The analysis should include the following:

- a) All existing costs of inspection, operation, maintenance, testing, failure restoration, outage costs, and risks (utility and customer) caused by equipment inspections, maintenance, and failures before implementation of monitoring schemes
- b) All reduced costs of displaced or reduced inspection, operation, maintenance, monitoring, testing, outage costs, and risks (utility and customer) caused by equipment inspections, maintenance, and failure caused by monitoring schemes
- c) All increased costs of operation, maintenance, inspection, monitoring, testing, training, outages, and risks (utility and customer) caused by equipment inspections, maintenance, and failure caused by monitoring schemes; monitoring maintenance and false alarms; cost of monitoring installation; cost to analyze data and information; communication facilities; and increased training for those installing, servicing, maintaining, and using monitoring systems
- d) All benefits from increased operability and greater utilization, more appropriate timing and degree of maintenance, knowledge of the condition of a population of equipment from monitoring an individual equipment condition, increased safety adjacent to equipment with condition concerns, decreased risk exposure, and improved environmental protection

### 5.5.1 Inspection

Monitoring can often be used to supplement and reduce manual inspections. The decreased monitoring costs, including travel labor and vehicle time and expenses; disassembly, manual inspection, and time and expenses to reassemble; visual inspection; and reporting time, are to be evaluated against the cost of the automated or manual monitoring techniques. There is obvious risk in relying only on manual periodic inspection to detect impending failures if the failure development characteristic is much longer than the inspection interval. Conversely, some monitoring can be best served by periodic testing. Inspection costs are to include downtime costs to perform the inspection.

### 5.5.2 Maintenance

On-line condition monitoring also influences the maintenance program for substation power equipment.

Monitoring can be used to optimize the extent, timing, and specific maintenance activities to be performed. Similar calculations can be made for the costs and benefits associated with minor and major maintenance for each type of equipment, with and without monitoring installed.

Various power utilities and industrial power equipment owners have different maintenance programs. These programs are based on a number of factors, including time intervals or dates, type of equipment (MV, HV, oil, vacuum,  $SF_6$ ), condition of equipment, age, brand and model of equipment, reliability, and criticality of application. Although historically the maintenance and inspection programs were primarily time-based, the trend is toward more sophisticated maintenance schemes.

### 5.5.3 Consequences of failure

A method of evaluating the value of monitoring is to consider the consequences of failure when monitoring is installed and when it is not installed. (An alternative is to consider only the reduction in failure, maintenance, and inspection costs when monitoring is installed.)

A methodology to assess the consequences of failure is included from the CEA on-line condition monitoring report [CEA Project No. 485T1049 (1997)]. Several of these considerations can also be applied to maintenance-caused outages as well as to the costs of inspections.

Consider the consequences of failure in terms of the degree of acceptability for a particular failure mode.

The value of on-line condition monitoring can be significant if the consequences are major (risk to personnel, prolonged outage, disruption to large sensitive customers, etc.). The consequences may also be significant in symbolic and pragmatic capital terms or in social terms (connection to a hospital or to a remote rural community subject to low ambient temperatures). In contrast, the value of on-line condition monitoring can be minimal if the consequences are minor. The consequences of failure are an integral part of the costbenefit analysis [CEA Project No. 485T1049 (1997)].

To evaluate the benefit of on-line condition monitoring applied to prevent or reduce failures, the following information should be known for circumstances without monitoring and estimated for the following situations in which monitoring is being considered [CEA Project No. 485T1049 (1997)]:

- a) Major (excluding explosive failures) failure rate (*MFR*) in [#failures/component/year]
- b) Minor failure rate (*mfr*) in [#failures/component/year]
- c) Explosive failure rate (*EFR*) [#failures/component/year]
- d) Cost of repair for major, minor, and explosive failures (*CR*, *cr*, *ECR*) in [\$/failure]
- e) Cost of outages for major, minor, and explosive failures (*CO*, *co*, *ECO*) [\$/hour]
- f) Repair times for major, minor, and explosive failures (*RF, rf, RE*) in [hour/failure]

The above rates are average annual values. The costs can change from year to year because of changing failure trends, cost escalation, and so on. The cost of failure (CF) in dollars per component per year can be evaluated as

$$CF\left[\frac{\$}{\text{component/year}}\right] = MFR \times CR + mfr \times cr + EFR \times ECR$$
$$\times MFR \times CO \times RF + mfr \times co \times rf + EFR \times ECO \times RE$$

The total cost of failures (TCF) can be calculated for a type of component (type of breaker) as

$$TCF\left[\frac{\$}{\text{year}}\right] = CF \times (\# \text{ of components of a given type})$$

It should be noted that *CF* can vary from year-to-year because of factors such as cost escalation and failure predictions. The above formula should be recalculated for all component (breaker) types to obtain the costs of failures of equipment.

An example inspection and maintenance program with resulting failure rates is shown in Table 24.

In addition to Table 24, the following factors should be considered when performing a cost-benefit analysis [CEA Project No. 485T1049 (1997)]:

- Replacement cost of equipment (include purchase and installation costs)
- Damage to adjacent equipment (utility and customer) facilities, including the costs to replace and rehabilitate neighboring facilities
- Insurance premiums based on facility performance history

Inspection costs	Maintenance costs (minor and major)	Failure resolution costs
Example	Example	Example
Monthly visual inspection of circuit breaker, record operations counter, compressed air pressure	Minor maintenance— every 3 years, external, including contact resistance, oil check, and lubrication	Major (excluding explosive failures) failure rate ( <i>MFR</i> ) in number of failures/component/year = 0.0089
Diagnostic inspection—periodic contact resistance check, dielectric test, contact	Major maintenance— every 6 years, internal,	Minor failure rate ( <i>mfr</i> ) in number of failures/ component/year = $0.0782$
motion test every third inspection	contact maintenance, oil, interrupter, etc.	Explosive failure rate ( <i>EFR</i> ) in number of failures/component/year = 0.0019
		Cost of repair for major, minor, and explosive failures ( <i>CR</i> , <i>cr</i> , <i>ECR</i> ) in \$/failure = \$50K, \$5K, \$450K
		Cost of outages for major, minor, and explosive failures ( <i>CO</i> , <i>co</i> , <i>ECO</i> ) in \$/hour = \$1.5K, \$0.1K, \$5.7K/MWh
		Repair times for major, minor, and explosive failures ( <i>RF</i> , <i>rf</i> , <i>RE</i> ) in hour/failure = 24, 6, 144 h

### Table 24—Example inspection and maintenance program with resulting failure rates

- Replacement cost of appropriate equipment
- Costs of replacing equipment, including all labor and possible overtime rates, materials, supplies, vehicles, specialized machinery, contractor services
- Technical, engineering, and management support
- Outage costs incurred by the power system, including loss of energy sales opportunities, increased system losses during outage, reduced system reliability during outage
- Outage costs incurred by affected customers, including loss of production, damage to plant facilities, start-up costs and damage to facilities, production of less than commercial quality product during start-up, penalties for delivery disruption, loss of sales, missed opportunities, increased marketing costs
- Loss of revenue (utility and customer)
- Loss of reputation (utility and customer)
- Injury (utility and customer)
- Loss of life of equipment or plant (utility and customer)
- Problem cascading to major blackout
- Nonoptimal utilization of equipment remaining life

- Direct or indirect failure caused by intrusive inspection or maintenance without on-line condition monitoring
- Undiscovered equipment "common-type" problems that may spread within a specific equipment population
- Failure to meet electric supply contracts and potential liabilities
- Failure modes with environmental impact (utility and customer)
- Relative waste of resources using less-effective maintenance processes
- Interest and overhead charges on many of the above
- Costs of maintaining the monitoring systems
- Costs of responding to false alarms
- Cost of damage from undetected events that might have been detected with existing inspections and maintenance
- Increased costs for scheduling maintenance (maintenance driven by monitor output alone cannot be levelized)
- Cost of reading, storing, and analyzing data from monitors
- All reduced benefits caused by not realizing the calculated savings from a circuit breaker monitordriven maintenance program; a user may have difficulty levelizing his maintenance workforce with a true circuit breaker monitor-driven maintenance program; all of the calculated savings may not be attainable

Table 25 lists some costs involved in inspection, maintenance, and failure work associated with substation power equipment. Although not complete for every situation, it can provide guidance in determining a significant portion of the costs. Identifying the full cost of maintenance is vital to identifying how much money is available for on-line condition monitoring. Often, a reduction of these full maintenance costs is required to justify implementation of monitoring schemes. Some power equipment owners might have only a partial appreciation of the full cost of maintenance and underestimate their full maintenance costs, perhaps including portions of the maintenance costs with general operational costs. Some of those "operations costs" would not be incurred if it were not for maintenance purposes. Similarly, the full costs of failure and of inspections is essential to providing the complete view of costs and benefits associated with monitoring.

On-line condition monitoring (or even off-line or periodic monitoring) can modify the above costs. Several possible benefits of such monitoring and diagnostic schemes are listed as follows:

- Improved electric service delivery reliability performance
- Knowledge and ability to remove equipment from service in a planned manner (albeit possibly with little planning time), rather than having it fail unexpectedly
- Knowledge and ability to make replacement decisions based on balancing outage time and duration, coordination with customers and other parts of the power system, and delivery of suitable replacement components or equipment.
- Knowledge and ability to increase the effective service (loading) of equipment in a short- and a longterm planned manner
- Positive effect on insurance premiums
- More appropriate timing and selection of maintenance

# Table 25—Inspection, minor and major maintenance, andfailure resolution cost considerations

Inspection costs	Maintenance costs (minor and major)	Failure resolution costs
Example	Example	Example
Actual inspection labor	Actual maintenance labor	Actual failure analysis labor
Travel time and costs	Travel time and costs	Travel time and costs
Contractor services	Contractor services	Contractor services
Training time and costs	Training time and costs	Training time and costs
Reporting and inputting data	Reporting and inputting data	Reporting and inputting data
Analyzing results	Analyzing results	Analyzing results
Clerical support personnel	Clerical support personnel	Clerical support personnel
Technical and management support of inspection activity; corporate resource overheads and loading associated with the inspection function	Technical and management support of maintenance activity; corporate resource overheads, and loading associated with the maintenance function	Technical and management support of restoration activity, corporate resource overheads, and loading associated with the restoration function
Vehicles, materials, supplies, machinery, and instrumentation	Vehicles, materials, and supplies, machinery, and instrumentation	Vehicles, materials, and supplies, machinery, and instrumentation
	Spare parts	Spare parts and equipment
	Spare parts management, procurement, warehousing, delivery, interest	Spare parts and equipment management, procurement, warehousing, delivery, interest
	Consumable material and supplies	Consumable material and supplies
	Preparation of power system switching schedules and orders; issuing of safe work permits	Preparation of power system switching schedules and orders; issuing of safe work permits
	Power system switching effort, installation, and removal of workers' protective grounding	Power system switching effort, installation, and removal of workers' protective grounding
	Power system outage costs, e.g., increased losses, loss of revenue	Power system outage costs, e.g., increased losses, loss of revenue
Vehicles, materials, supplies, machinery, and instrumentation	Possible damage to facilities required by maintenance access	Damaged equipment, damage to adjacent facilities, and equipment and facilities rebuild
		Apportioned cost of "system spares," purchase of replacement equipment or components
		Outage costs (loss of revenue, customer cost of energy supply interruption, overtime, etc.)
		Diagnostics and failure investigation
		"In" and "out" costs of failed equipment and replacement equipment, transportation
Other costs?	Other costs?	Other costs?

Having completed this calculation, the present worth of the cost of failure over the expected life of the equipment can be derived. However, even if the failure is avoided by using monitoring equipment, some inspection and corrective maintenance is still required. The above calculation should then be repeated using the expected lower costs of inspection, repair, and repair times with monitoring, again deriving the present worth. The difference between the two present worth values is the avoided cost that can be achieved by the implementation of on-line condition monitoring. Monitoring can be justified if its present worth cost is less than the avoided cost (CEA Project No. 485T1049 (1997) and Bergman et al. [B1]).

Two examples of value analysis of monitoring costs and benefits are illustrated in Table A.1 and Table A.2. Be aware that these are only examples used to illustrate some cost/benefit analysis and comparisons. An electronic spreadsheet could be developed to include the many considerations for a specific or particular application.

## Annex A

(informative)

## Examples of circuit breaker monitoring analysis

NOTE—The following comparisons are examples only. The numbers and values are not from any valid source, but they are used to show how a cost-benefit analysis comparison can be made to choose or reject installation of monitoring. The business cases are examples only. Fictitious numbers have been used to show a process and how a business model can be used. All costs are on an annualized basis. The present value of these costs has not been calculated. Use of a spreadsheet eases calculation and permits sensitivity analysis.

The examples shown are for illustrative purposes only. Numeric financial values are strictly for the purpose of showing that values can be assigned if so chosen. Actual circumstances can dictate values, costs, and expenses to be used in quantifying the risk, economic evaluation and justification, and the ultimate selection of monitoring. The specific circuit breaker technology employed can also either restrict or broaden opportunities for monitoring.

It is important for the user to keep records to establish costs and performance representative of the specific application being analyzed. The analysis should be performed by type of circuit breaker and type of failure mode(s). It should consider the sources of most appropriate sources of data and information.

The user should consider the specific application of the circuit breaker. Two identical circuit breakers in substantially different duties may behave differently, which in turn would lead to different values assigned to monitoring.

Circuit breakers used for capacitor switching, arc furnace duty, or frequent switching of large motors may have a shorter life expectancy and a greater value for on-line condition monitoring.

Failure rate costs should be calculated for the major and minor failure rates. Maintenance costs should be calculated for the minor and major maintenance activities.

Monetary values show dollars and cents because some values are sufficiently small that they would not show if dollars only were shown. The cumulative effect of many small items is shown. The assumptions underlying the calculations may not support this accuracy.

The examples presented here were developed using a spreadsheet to calculate financial values using inputs shown in the input values column. As a result, many financial values are small amounts; however, the sum totals are relevant to the evaluation. The intent of the example is to illustrate the many components that go toward making the total comparison of capital, operation, and maintenance costs.

### A.1 Example cost comparison with and without circuit breaker monitoring

Monitoring would not be economical on the basis of Table A.1. .

Annual direct costs					
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Inspection hours/breaker without monitoring (per breaker hours, although four breakers in one station)	0.25	3.00	\$111.00		
Number of annual inspections without monitoring	2.00				
Inspection hours/breaker with monitoring (per breaker hours, although four breakers in one station)	0.25			1.00	\$37.00
Number of annual inspections with monitoring	4.00				
Travel time and costs (hours each way shared by four breakers)	1.00	6.00	\$111.00	2.00	\$37.00
Contractor services (hours)		0.00	\$0.00	0.00	\$0.00
Reporting and inputting data (clerical)		0.15	\$4.16	0.00	\$0.00
Analyzing results (maintenance staff)		0.10	\$3.70	0.05	\$1.85
Clerical support personnel		0.20	\$5.55	0.05	\$1.39
Vehicles, materials and supplies, machinery, and instrumentation (inspection and travel time @ light truck hourly rate)			\$90.00		\$20.00
Other costs?			\$0.00		\$0.00
Subtotal annualized inspection costs		9.45	\$325.41	3.10	\$97.24
Annual mai	ntenance costs (	(major and mir	ior)		
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Maintenance hours/breaker without monitoring (per breaker hours, although four breakers in one station)	8.00	2.00	\$74.00		
Number of years between maintenance without monitoring	4.00				
Maintenance hours/breaker with monitoring (per breaker hours, although four breakers in one station)	8.00			1.00	\$37.00
Number of years between maintenance with monitoring	8.00				
Travel time and costs (hours each way shared by four breakers)	1.00	0.50	\$18.50	0.25	\$9.25
Contractor services		0.00	\$0.00	0.00	\$0.00
Reporting and inputting data (clerical)		0.15	\$4.16	0.00	\$0.00

Annual maintenance costs (major and minor) (continued)						
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring	
Analyzing results (maintenance staff)		0.10	\$5.55	0.05	\$2.78	
Clerical support personnel		0.20	\$5.55	0.05	\$1.39	
Vehicles, materials and supplies, machinery, and instrumentation			\$25.00		\$12.50	
Spare parts/maintenance @ \$	\$200.00		\$50.00		\$25.00	
Spare parts management, procurement, warehousing, delivery, interest (@ xx% of parts/year)	10.00%		\$5.00		\$2.50	
Consumable material and supplies @ \$xx/maintenance	\$100.00		\$25.00		\$12.50	
Preparation of power system switching schedules and orders, issuing of safe work permit hours /maintenance @ xx hours/maintenance (maintenance rate)	0.50	0.13	\$4.63	0.06	\$2.31	
Power system switching effort, installation and removal of workers protective grounding @ xx hours/ maintenance (maintenance rate)	1.00	0.25	\$9.25	0.13	\$4.63	
Power system outage costs, e.g., increased losses, loss of revenue			\$0.00		\$0.00	
Possible damage to facilities required by maintenance access			\$0.00		\$0.00	
Other costs?			\$0.00		\$0.00	
Subtotal annualized maintenance costs		3.33	\$226.64	1.54	\$109.85	
Ann	ual failure resol	lution costs				
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring	
Failure rate (from user's source)	0.00100	0.0010				
Failure rate decrease with monitoring @ xx% previous rate	25.00%			0.0003		
Actual failure analysis labor (xx hours/failure maintenance hourly rate)	40.00	0.0400	\$1.48	0.0100	\$0.37	
Travel time and costs @ 5 round trips of 0.25 hour each way		0.0000	\$0.00	0.0006	\$0.02	
Analyzing results @ 10 hours/failure (engineer rate)		0.0100	\$0.06	0.0000	\$0.01	
Clerical support personnel @ 4 hours/failure		0.0040	\$0.03	0.0010	\$0.01	
Technical and management support of restoration activity, corporate resource overheads, and loading associated with the restoration function @ 100 hours/failure		0.1000	\$5.55	0.0250	\$1.39	

Annual failure resolution costs (continued)					
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Vehicles, materials and supplies, machinery, and instrumentation			\$0.10		\$0.00
Spare parts and spare equipment @ \$5 000.00			\$5.00		\$0.00
Spare parts management, procurement, warehousing, delivery, interest (@ 10% of parts)			\$0.50		\$0.00
Consumable material and supplies @ \$10.00/maintenance			\$2.00		\$2.00
Power system switching effort, installation and removal of workers protective grounding @ xx hours/failure	1.00	0.00	\$0.04	0.0003	\$0.01
Power system outage costs, e.g., increased losses (@ \$xxx.xx/occurrence)	\$100.00		\$0.10		\$0.03
Damaged equipment, damage to adjacent facilities, and equipment and facilities rebuild @ \$x xxx/failure	\$500.00		\$0.50		\$1.25
Apportioned cost of "system spares," purchase of replacement equipment or components example 1 spare breaker of \$100 000/25 breakers = \$4 000.00/breaker	\$5000.00		\$5.00		\$1.25
Diagnostics and failure investigation (@ xx hours/ investigation) (engineering hourly rate)	40	0.04	\$2.22	0.01	\$0.56
"In" and "out" costs of failed equipment and replacement equipment, transportation @ \$ x xxx.xx/ occasion	\$5000.00		\$5.00		\$1.25
Other costs?			\$0.00		\$0.00
Subtotal annualized failure resolution costs		0.20	\$27.57	0.05	\$7.02
Subtotal annualized direct inspection, maintenance, and failure resolution costs		12.97	579.62	4.68	214.10
Annual mor	nitoring installa	tion and operat	tion		
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Monitoring capital cost (@ \$xxx.xx)	\$10000.00				\$500.00
Expected life of monitoring (years)	20				
Installation labor (maintenance hourly rate)	16			0.80	\$29.60
Installation labor (engineer hourly rate)	10			0.50	\$27.75
Annual monitoring support xx hours/year (maintenance hourly rate)	2			2.00	\$74.00
Annual monitoring support xx hours/year (engineering hourly rate)	4			4.00	\$222.00

#### Annual monitoring installation and operation (continued) Costs Annualized Annualized Costs with Annual inspection costs **Input values** without hours hours monitoring monitoring Annual monitoring support xx hours/year (clerical 2 0.00 2.00 \$55.50 hourly rate) 13.31 \$633.20 14.07 \$1136.57 Subtotal annualized monitoring costs Annual subtotal direct inspection, maintenance, and 26.28 \$1212.82 1.75 \$1350.67 failure resolution with and without monitoring Annual power systems cost Costs Annualized Annualized Costs with Annual inspection costs **Input values** without hours hours monitoring monitoring Cost/MWh \$20.00 \$0.50 \$0.13 Power delivery interruption (MW) 5 Interruption duration (hours) 4 25 \$12.50 \$3.13 Power system outage cost to customer = xx times utility loss of revenue \$13.00 \$3.25 Subtotal power system costs Annual subtotal with direct inspection, maintenance, \$1225.82 \$1353.92 and failure resolution costs with and without monitoring, including power system costs Annual benefit (per breaker) with monitoring -\$128.11 **\$ PER BREAKER** Rate "Loaded" Annual indirect costs (benefits, supervision, vacation, sick time + location expense and overhead) rate Maintenance staff labor hourly rate \$20.00 \$37.00 Support staff labor hourly rate \$15.00 \$27.75 Engineering staff labor hourly rate \$30.00 \$55.50 Indirect costs (benefits, supervision, vacation, sick time 1.85 + location expense) overhead multiplier Light truck hourly rate \$10.00 \$10.00 Maintenance truck hourly rate with tools/hour \$50.00 \$50.00 Contractor rate \$0.00 \$0.00

Notes to Table A.1:

- 1-Repeat analysis for each failure mode and failure cause.
- 2-Include costs of all maintenance tasks.

3—Include all risk (or criticality) costs associated with failures. Utility damage and repair costs, loss of revenue, and restoration of service costs are to be included. Customers' costs of "unsupplied energy" include business or process disruption, loss of product, facility damage, additional labor costs, waste or costs to return to commercial quality production, and penalties. Monitoring should be able to reduce the probability of an equipment condition progressing to the failure state by allowing prior removal from service. Consequences of the failure may also be reduced with the early warning of an impending failure. Reduction in probability or in consequence has the effect of reducing the cost of the failure risk, and is attributed as a benefit of condition monitoring.

4—Monitoring costs include the costs of selecting appropriate monitoring, engineering, purchase and installation, training, operational costs associated with data retrieval and analysis, maintenance, and troubleshooting of monitoring schemes.

5—Maintenance costs are reduced by condition monitoring triggering only appropriate maintenance tasks at the appropriate interval, thus, eliminating unnecessary maintenance and associated activities.

6-Include all costs associated with inspections (see Table 25).

7—Include all costs associated with failure resolution (see Table 25).

### A.2 Example cost comparison with and without circuit breaker monitoring

Monitoring would be economical on the basis of Table A.2.

Annual direct costs						
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring	
Inspection hours/breaker without monitoring (per breaker hours, although four breakers in one station)	0.50	6.00	\$277.50			
Number of annual inspections without monitoring	12.00					
Inspection hours/breaker with monitoring (per breaker hours, although four breakers in one station)	0.50			2.00	\$92.50	
Number of annual inspections with monitoring	4.00					
Travel time and costs (hours each way shared by four breakers)	1.00	6.00	\$138.75	2.00	\$46.25	
Contractor services (hours)		0.00	\$0.00	0.00	\$0.00	
Reporting and inputting data (clerical)		0.15	\$4.72	0.00	\$0.00	
Analyzing results (maintenance staff)		0.10	\$4.63	0.05	\$2.31	
Clerical support personnel		0.20	\$6.29	0.05	\$1.57	

#### Annual direct costs (continued) Costs Input Annualized Annualized Costs with Annual inspection costs without values hours hours monitoring monitoring Vehicles, materials and supplies, machinery, and \$120.00 \$20.00 instrumentation (inspection and travel time @ light truck hourly rate) Other costs? \$0.00 \$0.00 4.10 Subtotal annualized inspection costs 12.45 \$551.88 \$162.64 Annual maintenance costs (major and minor) Costs Annualized Annualized Costs with Input without Annual inspection costs values hours hours monitoring monitoring 12.00 \$138.75 Maintenance hours/breaker without monitoring (per 3.00 breaker hours, although four breakers in one station) Number of years between maintenance without 4.00 monitoring Maintenance hours/breaker with monitoring (per 12.00 1.50 \$69.38 breaker hours, although four breakers in one station) Number of years between maintenance with 8.00 monitoring 1.00 0.50 \$23.13 0.25 \$11.56 Travel time and costs (hours each way shared by four breakers) 0.00 \$0.00 0.00 Contractor services \$0.00 \$4.72 0.00 Reporting and inputting data (clerical) 0.15 \$0.00 Analyzing results (maintenance staff) 0.10 \$6.48 0.05 \$3.24 Clerical support personnel 0.20 \$6.29 0.05 \$1.57 Vehicles, materials and supplies, machinery, and \$35.00 \$17.50 instrumentation Spare parts/maintenance @ \$xx \$200.00 \$50.00 \$25.00 Spare parts management, procurement, warehousing, 10.00% \$5.00 \$2.50 delivery, interest (@ xx% of parts/year) Consumable material and supplies \$100.00 \$25.00 \$12.50 @ \$xx/maintenance

Annual maintenance costs (major and minor) (continued)					
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Preparation of power system switching schedules and orders, issuing of safe work permits hours / maintenance @ xx hours/maintenance (maintenance rate)	0.50	0.13	\$5.78	0.06	\$2.89
Power system switching effort, installation and removal of workers protective grounding @ xx hours/ maintenance (maintenance rate)	1.00	0.25	\$11.56	0.13	\$5.78
Power system outage costs, e.g., increased losses, loss of revenue			\$0.00		\$0.00
Possible damage to facilities required by maintenance access			\$0.00		\$0.00
Other costs?			\$0.00		\$0.00
Subtotal annualized maintenance costs		4.33	\$311.70	2.04	\$151.92
Annu	ual failure reso	lution costs			
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Failure rate (from user's source)	0.00160	0.0016			
Failure rate decrease with monitoring @ xx% previous rate	25.00%			0.0004	
Actual failure analysis labor (xx hours/failure maintenance hourly rate)	50.00	0.0800	\$3.70	0.0200	\$0.93
Travel time and costs @ 5 round trips of 0.25 hour each way		0.0000	\$0.00	0.0010	\$0.05
Analyzing results @ 10 hours/failure (engineer rate)		0.0160	\$0.10	0.0000	\$0.03
Clerical support personnel @ 4 hours/failure		0.0064	\$0.05	0.0016	\$0.01
Technical and management support of restoration activity, corporate resource overheads, and loading associated with the restoration function @ 100 hours/ failure		0.1600	\$10.36	0.0400	\$2.59
Vehicles, materials and supplies, machinery, and instrumentation			\$0.16		\$0.00
Spare parts and spare equipment @ \$5 000.00			\$8.00		\$0.00
Spare parts management, procurement, warehousing, delivery, interest (@ 10% of parts)			\$0.80		\$0.00

Annual failure resolution costs (continued)					
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Consumable material and supplies @ \$10.00/maintenance			\$2.00		\$2.00
Power system switching effort, installation and removal of workers protective grounding @ xx hours/ failure	1.00	0.00	\$0.07	0.0004	\$0.02
Power system outage costs, e.g., increased losses (@ \$xxx.xx/occurrence)	\$500.00		\$0.80		\$0.20
Damaged equipment, damage to adjacent facilities, equipment and facilities rebuild @ \$x xxx/failure	\$500.00		\$0.80		\$0.20
Apportioned cost of "system spares," purchase of replacement equipment or components example 1 spare breaker of \$100 000/25 breakers = \$4 000.00/ breaker	\$6000.00		\$9.60		\$2.40
Diagnostics and failure investigation (@ xx hours/ investigation) (engineering hourly rate)	80.00	0.13	\$8.29	0.03	\$2.07
"In" and "out" costs of failed equipment and replacement equipment, transportation @ \$x xxx.xx/ occasion	\$5000.00		\$8.00		\$2.00
Other costs?			\$0.00		\$0.00
Subtotal annualized failure resolution costs		0.39	\$52.74	0.10	\$12.49
Subtotal annualized direct inspection, maintenance, and failure resolution costs		17.17	916.32	6.23	327.04
Annual mor	nitoring installa	tion and operat	ion		
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Monitoring capital cost (@ \$xxx.xx)	\$10000.00				\$500.00
Expected life of monitoring (years)	20				
Installation labor (maintenance hourly rate)	16			0.80	\$37.00
Installation labor (engineer hourly rate)	10			0.50	\$32.38
Annual monitoring support xx hours/year (maintenance hourly rate)	2			2.00	\$92.50

Annual monitorin	g installation a	nd operation (c	ontinued)		
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Annual monitoring support xx hours/year (engineering hourly rate)	4			4.00	\$259.00
Annual monitoring support xx hours/year (clerical hourly rate)	2	0.00		2.00	\$62.90
Subtotal annualized monitoring costs		17.85	\$1017.94	15.70	\$1334.79
Subtotal annualized direct inspection, maintenance, and failure resolution with and without monitoring		35.02	\$1934.26	21.93	\$1661.83
An	nual power sys	stems cost			
Annual inspection costs	Input values	Annualized hours	Costs without monitoring	Annualized hours	Costs with monitoring
Cost/MWh	\$20.00		\$1.60		\$0.40
Power delivery interruption (MW)	10				
Interruption duration (hours)	4				
Power system outage cost to customer = xx times utility loss of revenue	25		\$40.00		\$10.00
Subtotal power system costs			\$41.60		\$10.40
Annual subtotal with direct inspection, maintenance, and failure resolution costs with and without monitoring, including power system costs			\$1975.86		\$1672.33
Annual benefit (per breaker) with monitoring					\$303.62
			\$	PER BREAKE	R
Annual indirect costs (benefits, supervision, vacation, sick time + location expense and overhead)	Rate	"Loaded" rate			
Maintenance staff labor hourly rate	\$25.00	\$46.25			
Support staff labor hourly rate	\$17.00	\$31.45			
Engineering staff labor hourly rate	\$35.00	\$64.75			

Annual indirect costs (benefits, supervision, vacation, sick time + location expense and overhead) ( <i>continued</i> )	Rate ( <i>continued</i> )	"Loaded" rate ( <i>continued</i> )
Indirect costs (benefits, supervision, vacation, sick time + location expense) overhead multiplier	1.85	
Light truck hourly rate	\$10.00	\$10.00
Maintenance truck hourly rate with tools/hour	\$50.00	\$50.00
Contractor rate	\$0.00	\$0.00

Notes to Table A.2:

1-Repeat analysis for each failure mode and failure cause.

2—Include costs of all maintenance tasks.

3—Include all risk (or criticality) costs associated with failures. Utility damage and repair costs, loss of revenue, and restoration of service costs are to be included. Customers' costs of "unsupplied energy" include business or process disruption, loss of product, facility damage, additional labor costs, waste or costs to return to commercial quality production, penalties, and so on. Monitoring should be able to reduce the probability of an equipment condition progressing to the failure state by allowing prior removal from service. Consequences of the failure may also be reduced with the early warning of an impending failure. Reduction in probability or in consequence has the effect of reducing the cost of the failure risk and is attributed as a benefit of condition monitoring.

4—Monitoring costs include the costs of selecting appropriate monitoring, engineering, purchase and installation, training, operational costs associated with data retrieval and analysis, maintenance, and troubleshooting of monitoring schemes.

5—Maintenance costs are reduced by condition monitoring triggering only appropriate maintenance tasks at the appropriate interval, thus, eliminating unnecessary maintenance and associated activities.

6—Include all costs associated with inspections (see Table 25).

7-Include all costs associated with failure resolution (see Table 25).

## Annex B

(informative)

## Examples of maintenance programs with and without monitoring

The following examples illustrate different maintenance programs for a bulk oil circuit breaker. They are provided as an example to indicate the possibilities for maintenance modifications available with monitoring. The inspection and maintenance tasks and intervals are illustrative only and are not intended to represent recommendations.

### B.1 Example maintenance programs with and without monitoring

No monitoring

- Routine maintenance (external inspection of breakers)-every 2 weeks to 1 month
- Internal maintenance-every 2 to 10 years, regardless of the condition, age, brand, and so on

With monitoring

- Inspection (visual)—every 3 months
- Internal maintenance-condition based, expected to vary from every 1 to 17 years

### B.2 Example maintenance programs with and without monitoring

No monitoring

- Diagnostic inspection—every 5 to 7 years, contact resistance check, dielectric test, contact motion test every third inspection
- Internal maintenance-no particular time interval only based on condition, scheduled when necessary

With monitoring

- Internal maintenance-condition based, expected to vary from every 3 to 12 years

### B.3 Example maintenance programs with and without monitoring

No monitoring

- Inspection—every month, visual, operate the breaker if it did not operate in the last 3 months
- Minor maintenance—every 3 years, external, including contact resistance, oil check, lubrication
- Major maintenance—every 4 to 8 years, internal, contact maintenance, oil, interrupter, etc.

With monitoring

- Inspection (visual)—every 3 months
- Major maintenance—condition based, expected to be every 7 to 12 years

## Annex C

(informative)

## Bibliography

[B1] Bergman, W. J., Peelo, D., Meehan, J., Short, D., and Eden, D., "A value based methodology for selecting on-line condition monitoring of substation power equipment," *Electric Power Research Institute (EPRI)*, *Substation Equipment Diagnostics Conference V*, New Orleans, LA, Feb. 17–19, 1997.

[B2] Canadian Electricity Association (CEA), "Forced outage performance of transmission equipment available by five year windows of performance data for periods January 1, 1984 through December 31, 1996," 1997.

[B3] Canadian Electricity Association (CEA), Guide to reporting transmission outages, Jan. 1991.

[B4] Carreau, D., Mont-Briant, M., Jolicoeur, A., Claude, R., Mercier, P. and Landry, M., "A methodology for assessing the economic justification of retrofitting on-line condition monitoring to an existing circuit breaker installation," *Electric Power Research Institute (EPRI), Substation Equipment Diagnostics Conference VII*, New Orleans, LA, Feb. 23, 1999.

[B5] CIGRE, "The first international inquiry on circuit breaker failures and defects in service," *CIGRE Electra*, no. 79, Dec. 1981, pp. 21–91.

NOTE—See also the second issue of this report:

[B6] Beierer, J., Kearsley, R., and Verdon, J., "Maintenance of modern high voltage circuit breakers," *CIGRE Electra*, no. 102, Oct. 1985, pp. 119–131.

NOTE—See also the third issue of this report:

[B7] Michaca, R., Heising, C. R., and Koppl, G., "Summary of CIGRE Working Group 13.06 studies on test and control methods intended to assure the reliability of high voltage circuit breakers," *CIGRE Electra*, no. 102, Oct. 1985, pp. 133–175.

[B8] CIGRE, "Final report of the second international inquiry on high voltage circuit breaker failures," CIGRE Working Group, 13.06 Report, June 1994.

NOTE—See also the second issue of this report:

[B9] "Diagnostic techniques for high voltage circuit breakers and their applications," *CIGRE Symposium on Diagnostics and Maintenance Techniques*, Berlin, Germany, Paper No. 120-07.

[B10] IEC, "The second working draft of risk management terminology," ISO/TMB Working Group on Risk Management Terminology N23, July 2, 1999.

[B11] IEC TC56, 56/669/CDV Draft IEC 60300, Dependability management—Part 3-13: Application guide—Project risk management, Aug. 13, 1999.

[B12] IEEE 100 The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.

[B13] Storms, A. D., "Circuit breaker reconditioning and replacement criteria for low and medium voltage circuit breakers—A position paper (Storms Advisory Services)," Presented at the *10th Annual Electrical Power & Protective Systems Technical Seminar*, Power Distribution Services, Cincinnati, OH, Aug. 20–21, 1997.