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IEEE Guide for the Interpretation of
Gases Generated in Oil-immersed
Transformers

1. Introduction

The detection of certain gases generated in an oil-filled transformer in service is frequently the first available
indication of a malfunction that may eventually lead to failure if not corrected. Arcing, corona discharge, low-energy
sparking, severe overloading, pump motor failure, and overheating in the insulation system are some of the possible
mechanisms. These conditions occurring singly, or as several simultaneous events, can result in decomposition of the
insulating materials and the formation of various combustible and noncombustible gases. Normal operation will also
result in the formation of some gases. In fact, it is possible for some transformers to operate throughout their useful life
with substantial quantities of combustible gases present. Operating a transformer with large quantities of combustible
gas present is not a normal occurrence but it does happen, usually after some degree of investigation and an evaluation
of the possible risk.

In a transformer, generated gases can be found dissolved in the insulating oil, in the gas blanket above the oil, or in gas
collecting devices. The detection of an abnormal condition requires an evaluation of the amount of generated gas

present and the continuing rate of generation. Some indication of the source of the gases and the kind of insulation

involved may be gained by determining the composition of the generated gases.

1.1 Scope
This guide applies to mineral-oil-immersed transformers and addresses:

1) The theory of combustible gas generation in a transformer

2) The interpretation of gas analysis

3) Suggested operating procedures

4) Various diagnostic techniques, such as key gases, Dornenberg ratios, and Rogers ratios
5) Instruments for detecting and determining the amount of combustible gases present

6) A bibliography of related literature
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1.2 Limitations

Many techniques for the detection and the measurement of gases have been established. However, it must be
recognized that analysis of these gases and interpretation of their significance is at this time not a science, but an art
subject to variability. Their presence and quantity are dependent on equipment variables such as type, location, and
temperature of the fault; solubility and degree of saturation of various gases in oil; the type of oil preservation system;
the type and rate of oil circulation; the kinds of material in contact with the fault; and finally, variables associated with
the sampling and measuring procedures themselves. Because of the variability of acceptable gas limits and the
significance of various gases and generation rates, a consensus is difficult to obtain. The principal obstacle in the
development of fault interpretation as an exact science is the lack of positive correlation of the fault-identifying gases
with faults found in actual transformers.

The result of various ASTM testing round robins indicates that the analytical procedures for gas analysis are difficult,
have poor precision, and can be wildly inaccurate, especially between laboratories. A replicate analysis confirming a
diagnosis should be made before taking any major action.

This guide is, in general, an advisory document. It provides guidance on specific methods and procedures to assist the
transformer operator in deciding on the status and continued operation of a transformer that exhibits combustible gas
formation. However, operators must be cautioned that, although the physical reasons for gas formation have a firm
technical basis, interpretation of that data in terms of the specific cause or causes is not an exact science, but is the
result of empirical evidence from which rules for interpretation have been derived. Hence, exact causes or conditions
within transformers may not be inferred from the various procedures. The continued application of the rules and limits

in this guide, accompanied by actual confirmation of the causes of gas formation, will result in continued refinement
and improvement in the correlation of the rules and limits for interpretation.

Individual experience with this guide will assist the operators in determining the best procedure, or combination of
procedures, for each specific case. Some of the factors involved in the decision of the operator are: the type of oil
preservation system, the type and frequency of the sampling program, and the analytical facilities available. However,

whether used separately or as complements to one another, the procedures disclosed in this guide all provide the
operator with positive and useful information concerning the serviceability of the equipment.

1.3 References

The following references should be used in conjunction with this guide:

[1] ASTM D2945-90, Test Methods for Gas Content of Insulating Dils.

[2] ASTM D3305-84 (Reaff. 89), Method for Sampling Gas from a Transformer.

[3] ASTM D3612-90, Test Methods for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas
Chromatography.

[4] ASTM D3613-87, Methods for Sampling Electrical Insulating Qils for Gas Analysis and Determination of Water
Content.

1.4 Definitions

The following definitions of terms are used in this guide:

IASTM publications are available from the Customer Service Department, American Society for Testing and Materials, 191@eRace Str
Philadelphia, PA 19103, USA.

2 Copyright © 1992 IEEE All Rights Reserved
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key gases:Gases generated in oil-filled transformers that can be used for qualitative determination of fault types,
based on which gases are typical or predominant at various temperatures.

partial discharge: An electric discharge that only patrtially bridges the insulation between conductors, and that may or
may not to the conductor.

TCG: Total combustible gas.
TDCG: Total dissolved combustible gas.

2. General Theory

The two principal causes of gas formation within an operating transformer are thermal and electrical disturbances.
Conductor losses due to loading produce gases from thermal decomposition of the associated oil and solid insulation.
Gases are also produced from the decomposition of oil and insulation exposed to arc temperatures. Generally, where
decomposition gases are formed principally by ionic bombardment, there is little or no heat associated with low-
energy discharges and corona.

2.1 Cellulosic Decomposition

The thermal decomposition of oil-impregnated cellulose insulation produces carbon oxides (§Gan@&ome
hydrogen or methane ¢1CH,) due to the oil (C@is not a combustible gas). The rate at which they are produced
depends exponentially on the temperature and directly on the volume of material at that temperature. Because of the
volume effect, a large, heated volume of insulation at moderate temperature will produce the same quantity of gas as
a smaller volume at a higher temperature.

2.2 Oil Decomposition

Mineral transformer oils are mixtures of many different hydrocarbon molecules, and the decomposition processes for
these hydrocarbons in thermal or electrical faults are complex. The fundamental steps are the breaking of carbon-
hydrogen and carbon-carbon bonds. Active hydrogen atoms and hydrocarbon fragments are formed. These free
radicals can combine with each other to form gases, molecular hydrogen, methane, ethane, etc., or can recombine to
form new, condensable molecules. Further decomposition and rearrangement processes lead to the formation of
products such as ethylene and acetylene and, in the extreme, to modestly hydrogenated carbon in particulate form.
These processes are dependent on the presence of individual hydrocarbons, on the distribution of energy and
temperature in the neighborhood of the fault, and on the time during which the oil is thermally or electrically stressed.
These reactions occur stoichiometrically; therefore, the specific degradations of the transformer oil hydrocarbon
ensembles and the fault conditions cannot be predicted reliably from chemical kinetic considerations. An alternative
approach is to assume that all hydrocarbons in the oil are decomposed into the same products and that each product is
in equilibrium with all the others. Thermodynamic models permit calculation of the partial pressure of each gaseous
product as a function of temperature, using known equilibrium constants for the relevant decomposition reactions. An
example of the results of this approach is shown in Fig 1 due to Halstead. The quantity of hydrogen formed is relatively
high and insensitive to temperature; formation of acetylene becomes appreciable only at temperatures neding 1000
Formation of methane, ethane, and ethylene each also have unique dependences on temperature in the model. The
thermodynamic approach has limits; it must assume an idealized but nonexistent isothermal equilibrium in the region
of a fault, and there is no provision for dealing with multiple faults in a transformer. However, the concentrations of the
individual gases actually found in a transformer can be used directly or in ratios to estimate the thermal history of the
oil in the transformer from a model and to adduce any past or potential faults on the unit. As the simplest example: the
presence of acetylene suggests a high temperature fault, perhaps an arc, has occurred in the oil in a transformer; the
presence of methane suggests thidafault has occurred—it is a lower energy electrical or thermal fault. Much work

has been done to correlate predictions from thermodynamic models with actual behavior of transformers.

Copyright © 1992 IEEE All Rights Reserved 3
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2.3 Application to Equipment

All transformers generate gases to some extent at normal operating temperatures. But occasionally a gas-generating
abnormality does occur within an operating transformer such as a local or general overheating, dielectric problems, or
a combination of these. In electrical equipment, these abnormalities are called “faults.” Thermal, corona, and arcing
faults are described in 3.1, 3.2, and 3.3. Internal faults in oil produce the gaseous byproducts hydjogesti{ahe

(CHy), acetylene (gH5), ethylene (GH,), and ethane (£1g). When cellulose is involved, the faults produce methane
(CHy), hydrogen (H), carbon monoxide (CO), and carbon dioxide f£L@ach of these types of faults produce certain

gases that are generally combustible. The total of all combustible gases may indicate the existence of any one, or a
combination, of thermal, electrical, or corona faults. Certain combinations of each of the separate gases determined by
chromatography are unique for different fault temperatures. Also, the ratios of certain key gases have been found to
suggest fault types. Interpretation by the individual gases can become difficult when there is more than one fault, or
when one type of fault progresses to another type, such as an electrical problem developing from a thermal one.

CH
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Figure 1— Halstead's Thermal Equilibrium Partial Pressures as a Function of Temperature

Attempts to assign greater significance to gas than justified by the natural variability of the generating and measuring
events themselves will lead to gross errors in interpretation. However, in spite these gas-generating mechanisms are the
only existing basis for the analytical rules and procedures developed in this guide. In fact, it is known that some
transformers continue to operate for many years in spite of above average rates of gas generation.

4 Copyright © 1992 IEEE All Rights Reserved
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2.4 Establishing Baseline Data

Establishing a reference point for gas concentration in new or repaired transformers and following this with a routine
monitoring program is a key element in the application of this guide. Monitoring the health (serviceability) of a
transformer must be done on a routine basis and can start anytime, not just for new units.

Generally, daily or weekly sampling is recommended after start-up, followed by monthly or longer intervals. Routine
sampling intervals may vary depending on application and individual system requirements. For example, some utilities
sample generator step-up (GSU) transformers four to six times a year, units rated over 138 kV twice a year, and some
765 KV units are sampled monthly.

2.5 Recognition of a Gassing Problem—Establishing Operating Priorities

Much information has been acquired over the past 20 years on diagnosing incipient fault conditions in transformer
systems. This information is of a general nature but is often applied to very specific problems or situations. One
consistent finding with all schemes for interpreting gas analysis is that the more information available concerning the
history of the transformer and test data, the greater the probability for a correct diagnosis of the health of the unit.

A number of simple schemes employing principal gases or programs using ratios of key gases have been employed for
providing a tentative diagnosis when previous information is unavailable or indicated no fault condition existed.
Principal gas or ratio methods require detectable or minimum levels of gases to be presents or norms to be exceeded,
before they can provide a useful diagnosis.

3. Interpretation of Gas Analysis

3.1 Thermal Faults

Referring to Fig 1, the decomposition of mineral oil from 280to 500°C produces relatively large quantities of the

low molecular weight gases, such as hydrogej) éid methane (C}), and trace quantities of the higher molecular
weight gases ethylene §8,) and ethane (&1g). As the fault temperature in mineral oil increases to modest
temperatures, the hydrogen concentration exceeds that of methane, but now the temperatures are accompanied by
significant quantities of higher molecular weight gases, first ethane and then ethylene. At the upper end of the thermal
fault range, increasing quantities of hydrogen and ethylene and traces of acetyldpen(@y be produced. In

contrast with the thermal decomposition of oil, the thermal decomposition of cellulose and other solid insulation
produces carbon monoxide (CO), carbon dioxide {IC@nd water vapor at temperatures much lower than that for
decomposition of oil and at rates exponentially proportional to the temperature. Because the paper begins to degrade
at lower temperatures than the oil, its gaseous byproducts are found at normal operating temperatures in the
transformer. A GSU transformer, for example, that operates at or near nameplate rating will normally generate several
hundred parts per million (ppm) of CO and several thousand parts per million,afi@@ut excessive hot spots.

The ratio of CQ/CO is sometimes used as an indicator of the thermal decomposition of cellulose. This ratio is
normally more than seven. For the £CO0 ratio, the respective values of £énd CO should exceed 5000 ppm and

500 ppm in order to improve the certainty factor, i.e., ratios are sensitive to minimum values. As the magnitude of CO
increases, the ratio of G@O decreases. This may indicate an abnormality that is degrading cellulosic insulation.

3.2 Electrical Faults—Low Intensity Discharges
Referring to Fig 1, low intensity discharges such as partial discharges and very low level intermittent arcing produce

mainly hydrogen, with decreasing quantities of methane and trace quantities of acetylene. As the intensity of the
discharge increases, the acetylene and ethylene concentrations rise significantly (see Table 6).

Copyright © 1992 IEEE All Rights Reserved 5



IIEEE Std C57.104-1991 IEEE GUIDE FOR THE INTERPRETATION OF GASES

3.3 Electrical Faults—High Intensity Arcing

Referring to Fig 1, as the intensity of the electrical discharge reaches arcing or continuing discharge proportions that
produce temperatures from 780 to 1800°C, the quantity of acetylene becomes pronounced.

4. Suggested Operating Procedures Utilizing the Detection and Analysis of

Combustible Gases

From an operational point of view, it is important to establish the following priorities:

1) Detection Detect the generation of any gases that exceed “normal” quantities and utilize appropriate
guidelines so the possible abnormality may be recognized at the earliest possible time in order to minimize
damage or avoid a failure.

2) Evaluation Evaluate the impact of an abnormality on the serviceability of the transformer, using a set of
guidelines or recommendations.

3) Action Take the recommended action, beginning with increased surveillance and confirming or
supplementary analysis and leading to either a determination of load sensitivity, reducing the load on the
transformer, or actually removing the unit from service.

The success of fault gas analysis necessitates the earliest possible detection of gases using the following methods:

0 Direct measurement of the amount of combustible gas in the gas space or relay [Total Combustible Gas
(TCG)—See 5.2.1 and 5.2.2].

0 Direct measurement of the amount of combustible gas dissolved in the oil (gas-in-oil monitors—See 5.2).

O Chromatographic separation and analysis for the individual components in a gas mixture extracted from a
sample of the transformer oil or a sample of the transformer gas space (See Section 7.).

An operating procedure utilizing the gas data from the above sources is to be developed immediately following the
initial detection of combustible gases. Fig 2 is a flow chart that traces the suggested process from the initial detection
of combustible gas to the final assessment of the status of the transformer.

4.1 Determining Combustible Gas Generating Rates

A given gas volume and distribution may be generated over a long time period by a relatively insignificant fault or in

a very short time period by a more severe fault. Hence, one measurement does not indicate the rate of generation and
may indicate very little about the severity of the fault. Once a suspicious gas presence is detected, it is important to be
certain whether the fault that generated the gas is active.

An evolution rate greater than (0.13) ftf combustible gas per day may indicate the unit has an active internal fault. To
calculate the rate of evolution, take the sum of the concentrations (in ppm) of all the combustible (everythigg but CO
0,, N,) in the first and second samples and use Eq 1.

_ (Sr—Sp) xV x 1076

R 75xT (1)
where:

R = Rate (ff/day)

S = First sample (ppm)

Sr = Second sample (ppm)
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T

Limits for average gas generation rates are given for gas space analysis (TCG) in 4.4.1, and for total dissolved gas
analysis (TDCG) in 4.4.2.

= Tank oil volume (gallons)

= Time (days)
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EXAMPLES
GAS DETECTED IN
RELAY, GAS SPACE, CONSERVATOR GAS SPACE
OR OIL STEP 1;: GASDETECTEDIN GAS DETECTED IN
OlL GAS SPACE

STEP 2: DATA (PPM): H; = TOTAL GAS = 1.5%
COMPARE VALUES 270, CH, =190, CO =
WITH TABLE 1 280, C,H, =37, CH,
=17,CHg =4
T TOTAL DISSOLVED
[ | COMBUSTIBLE GAS
TABLE 1 INDICATES TABLE 1 INDICATES (TDCG)=798
CONDITION 1: CONDITIONS 2, 3, 4.
NORMAL PROBLEM MAY EXIST| STEP 3. TABLE 1 INDICATES PROCEED TO
CONDITION 2 STEP 4
| l STEP 4: RESAMPLE (SEE RESAMPLE (SEE
RESUME NORMAL RESAMPLE TO FIND 4.1) INDICATES A 4.1) INDICATES A
SURVEILLANCE GENERATING RATE: RATE OF 20 PPMW/ RATE OF .025%/
REFER TO 4.1 DAY AND INCREAS- DAY AND
ING INCREASING
[ I STEP 5: TABLE 3 TABLE 2
INDICATES CONDITION 2, INTERVAL C
SQ&?PQES,,‘EE. DISSOLVED IN OIL: AND PROCEDURE 3. ADVISE MANUFAC-

GO TO TABLE 2

GO TOTABLE 3

INVESTIGATE POSSIBLE FAULT TYPE USING
METHODS DESCRIBED IN 4.5.1,4.6.1, or 4.6.2. REC-
OMMENDED INITIAL RESAMPLING INTERVALAND
OPERATING PROCEDURE.

STEP 6:

TURER; EXTREME CAUTION; PLAN OUT-
AGE; RESAMPLE PER INTERVAL;
ANALYZE GAS SPACE AND DISSOLVED
GAS COMPONENTS [SEE NOTE (1)]

4.5 KEY GAS: H,, CH,—ELECTRICAL-

CORONA.

4.6.1 DOERNENBURG [SEE NOTE (1)
FAULT TYPE: POSSIBLE ARCING.
4.6.2 ROGERS: FAULT TYPE: CASE 2

POSSIBLE ARCING.

ADJUST SAMPLING INTERVALAND OPERATING
PROCEDURE BASED ON ACCUMULATED DATA
AND EXPERIENCE

NOTES:
1 — Assume equal dissolved components in both examples.

2 — Actual case was inspected whesigreached 40 ppm. Found arcing between insulated NLTC shaft pin and coupling of drive
mechanism.

Figure 2— Operating Procedure Flow Chart
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4.2 Determining the Gas Space and Dissolved Gas-in-Oil Equivalents

Gas space and oil equivalents are used to compare the results of analysis of the gas space (TCG) with results from
analysis of the gases dissolved in the oil (TDCG). Comparisons of gas ratios obtained from the gas space can then be
compared to similar ratios of gases extracted from the oil. It should be noted that the calculated equivalent values of
TCG, and experimentally measured values of TCG probably do not show close agreement, since the equation for
obtaining the equivalents assumes the existence of equilibrium between the gas blanket and the oil. This condition may
not exist, particularly in the case of an actively progressing fault. However, the equation is valuable for the
determination of a limiting value for the expected total combustible gas concentration in the gas blanket. The dissolved
gas equivalent of the TG@s obtained using the following equation:

c| =<

n

TCG, = z = | * 100 2

n

C F
1ZBJ;

where:

TCG, = An estimate of the percent of combustible gas in the gas space

C = Combustible gas

G = Each gas dissolved in oil (combustible and noncombustible)

Fe = The concentration expressed in parts per million (ppm) of combustibtedissolved in oil
B = The Ostwald solubility coefficient of combustible gas

Fy = The concetration of a particular gas dissolved in oil

By = The Ostwald solubility coefficient of particular gas

Ostwald Coefficient B)

Gas (25°C)
Hy' 0.0429
0, 0.138
COo, 0.900
CoHy 0.938
CoHy 1.35
N, 0.0745
co’ 0.102
CoHg 1.99
CoHy 0.337

NOTE — Ostwald coefficients are for an oil with a density
of 0.880, a temperature of 26, and a pressure
of 1 atmosphere.

*Combustibles

4.3 Monitoring Insulation Deterioration Using Dissolved Gas Volume

One acceptable method for monitoring the deterioration of transformer insulating material involves calculating the
total volume of gas evolved. The total volume of evolved gas is an indicator of the magnitude of incipient faults.
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Succeeding samples indicate changes with time as the fault(s) develop. Trends are readily apparent when gas volume
is plotted versus time.

To determine the volume, in gallons, of fault gas dissolved in insulating oil, use Eq 3.

TCcG, = S M) 3
1, 00Q 000
where:
FG = Sum of K, CHy, C,Hg, CH,4, CH,, and CO (ppm)
\% = Volume of oil in transformer (gallons)

TCG, = Total dissolved combustible gas (gallons)

This straightforward method is useful for completely oil-filled (conservator-type) transformers with conditions that
produce small quantities of fault gas. These conditions warrant continued monitoring but have not yet developed a
distinct character according to the other methods of fault determination described in this guide. This fault-gas volume
method continues to be useful as fault conditions enlarge, with the added advantage that it permits continuous
monitoring of insulation deterioration in spite of any oil handling activity that includes degassification.

4.4 Evaluation of Transformer Condition Using Individual and TDCG Concentrations

It can be difficult to determine whether a transformer is behaving normally if it has no previous dissolved gas history.
Also, considerable differences of opinion exist for what is considered a “normal transformer” with acceptable
concentrations of gases.

A four-level criterion has been developed to classify risks to transformers, when there is no previous dissolved gas
history, for continued operation at various combustible gas levels. The criterion uses both concentrations for separate
gases and the total concentration of all combustible gases. See Table 1.

Condition 1 TDCG below this level indicates the transformer is operating satisfactorily (see Fig 2). Any
individual combustible gas exceeding specified levels should prompt additional investigation (see
4.5 and 4.6).

Condition 2 TDCG within this range indicates greater than normal combustible gas level. Any individual

combustible gas exceeding specified levels should prompt additional investigation. Proceed per
Fig 2, Step 3. Action should be taken to establish a trend (Fig 2, Step 4). Fault(s) may be present.
Proceed to 4.4.1 or 4.4.2.

Condition 3 TDCG within this range indicates a high level of decomposition. Any individual combustible gas
exceeding specified levels should prompt additional investigation. Proceed per Fig 2, Step 3.
Immediate action should be taken to establish a trend (Fig 2, Step 4). Fault(s) are probably
present. Proceed to 4.4.1 or 4.4.2.

Condition 4 TDCG within this range indicates excessive decomposition. Continued operation could result in
failure of the transformer. Proceed immediately and with caution per Fig 2, Step 3, and 4.4.1 or
4.4.2.

Table 1 lists the dissolved gas concentrations for the individual gases and TDCG for Conditions 1 through 4. This table

is used to make the original assessment of a gas sing condition on a new or recently repaired transformer or is used if
there are no previous tests on the transformer for dissolved gases or if there is no recent history. Users of this guide are
advised that the dissolved gas concentrations contained in Table 1 are consensus values based on the experiences of
many companies. The transformer operator may decide to use different dissolved gas concentrations for the individual
gases (particularly acetylene) and TDCG based on engineering judgment and experience with other similar
transformers.
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Table 1— Dissolved Gas Concentrations

Dissolved Key Gas Concentration Limits (ppr)

Status
H, CHy C,H, CoHy4 C.Hg co co, TDCGT
Condition 1 100 120 35 50 65 350 2500 720
Condiion2 ~ 101-700  121-400 36-50  51-100 66-100  351-570  2500-721-
4000 1920
Condition3  701-1800 401- 51-80  101-200  101-150 571- 4001-  1921-
1000 1400 10000 4630
Condition 4 >1800 >1000 >80 >200 >150 >1400  >10000  >4630

NOTES:

1 — Table 1 assumes that no previous tests on the transformer for dissolved gas analysis have been made or that no
recent history exists. If a previous analysis exists, it should be reviewed to determine if the situation is stable or
unstable. Refer to Tables 2 and 3 for appropriate action(s) tb be taken.

2 — An ASTM round robin indicated variability in gas analysis between labs. This should be considered when having
gas analysis made by different labs.

*The numbers shown in Table 1 are in parts of gas per million parts of oil (ppm) volumetrically and are based on a |atrge glonwaer

with several thousand gallons of oil. With a smaller oil volume, the same volume of gas will give a higher gas conceniedtion. S
distribution transformers and voltage regulators may contain combustible gases because of the operation of internalieegudsioad
break switches. The status codes in Table 1 are also not applicable to other apparatus in which load break switchesopérate und
tThe TDCG value does not include g@hich is not a combustible gas.

The condition for a particular transformer is determined by finding the highest level for individual gases or the TDCG
in Table 1. For example, if a sample contained the following gas concentrations (in ppm, vol/vol):

Hp CH,CoH,CH,CoHecoTDCG

270253 37 17 75 5241034
the gases that fall into the highest condition ageGH,, C;H,, CHg, and TDCG. Therefore, this data would indicate
that the transformer would be classified as Condition 2. This example can also be used to show two other factors that
should be considered when using this table, that is, the age of the transformer and the type of incipient condition.

New transformers (a year or less) usually contain levels of gases that would fall well below Condition 1 and do not
contain detectable levels of acetylene. Therefore, the degree of concern in the example would be much higher for a
one-month-old transformer than a 20-year-old transformer.

Another consideration is that acetylene may be generated from three different incipient fault conditions, i.e., high
temperature overheating of oil, partial discharge (low energy discharge), or arcing. In the case of overheating,
acetylene will represent a small proportion of the hydrocarbon gases. In the case of partial discharge, very high
concentrations of hydrogen will be generated relative to acetylene, and this would generally be a cause for concern
even though the TDCG is not abnormally high. The most severe condition is arcing. When high-energy arcing occurs,
hydrogen and acetylene are generally of the same magnitude, as are the hydrocarbon gases. When an active arcing
condition is found, immediate attention is required.

4.4.1 Determining the Transformer Condition and Operating Procedure Utilizing TCG in the Gas
Space

When sudden increases in the combustible gas concentrations or generating rates in the gas space of successfully
operating transformers occur and an internal fault is suspected, use the procedure recommended in Fig 2.

Table 2 indicates the recommended initial sampling intervals and operating procedures for various levels of TCG (in
percent).
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Once the source of gassing is determined by analysis, inspection, consultation, or combinations thereof and the risk
has been assessed, then engineering judgment should be applied to determine the final sampling interval and operating
procedure.

Table 2— Actions Based on TCG

Sampling Intervals and Operating Procedures
for Gas Generation Rates
TCG TCG
Levels Rate Sampling .
%) (%%/day) Interval Operating Procedures
Condition 4 >=5 >.03 Daily Consider removal from servicg.
- Advise manufacturer.
.03-.01 Daily
<.01 Weekly Exercise extreme caution.
Analyze for individual gases.
Plan outage.
Advise manufacturer.
Condition 3 <5to>=2 >.03 Weekly Exercise extreme caution.
Analyze for individual gases.
.03-.01 Weekly Plan outage.
<01 Monthly Advise manufacturer.
Condition 2 <2to>=5 >.03 Monthly Exercise caution.
Analyze for individual gases.
.03-.01 Monthly Determine load dependence.
<01 Quarterly
Condition 1 <5 >.03 Monthly Exercise caution.
Analyze for individual gases.
Determine load dependence.
.03-.01 Quarterly Continue normal operation.
<.01 Annual

Example:A transformer has a TCG level of 0.4% and is generating gas at a constant rate of 0.035% TCG per day. The
table indicates Condition 2. It should be sampled monthly, and the operator should follow Procedure 2 in Table 2.

4.4.2 Determining the Operating Procedure and Sampling Interval From the TDCG Levels and
Generating Rates in the Oil

When sudden increases in the dissolved gas content of the oil in successfully operating transformers occur and an
internal fault is suspected, the procedures recommended in Fig 2 should be used. Table 3 indicates the recommended
initial sampling intervals and operating procedures for various levels of TDCG (in ppm). An increasing gas generation
rate indicates a problem of increasing severity; therefore, a shorter sampling interval is recommended.

Once the source of of gassing is determined by analysis, inspection, consultation, or combinations thereof and the risk,

has been assessed, then engineering judgment should be applied to determine the final sampling interval and operating
procedure.
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Table 3— Actions Based on TDCG

Sampling Intervals and Operating Procedures
for Gas Generation Rates
TDCG TDCG
Levels Rates Sampling .
(opm) (ppmiday) Interval Operating Procedures
Condition 4 >4630 >30 Daily Consider removal from servicg.
- Advise manufacturer.
10-30 Daily
<10 Weekly Exercise extreme caution.
Analyze for individual gases.
Plan outage.
Advise manufacturer.
Condition 3 1921-4630 >30 Weekly Exercise extreme caution.
Analyze for individual gases.
10-30 Weekly Plan outage.
<10 Monthly Advise manufacturer.
Condition 2 721-1920 >30 Monthly Exercise caution.
Analyze for individual gases.
10-30 Monthly Determine load dependence.
<10 Quarterly
Condition 1 <720 >30 Monthly Exercise caution.
Analyze for individual gases.
Determine load dependence.
10-30 Quarterly Continue normal operation.
<10 Annual

Example:If a transformer has a TDCG level of 1300 ppm and generates gas at a constant rate below 10 ppm per day,
it should be sampled quarterly, and the operator should follow Procedure 2. If the rate increases to 30 ppm per day but
remains constant, the operator should now sample monthly.

4.5 Evaluation of Possible Fault Type by the Key Gas Method

The preceding discussion of the dependence on temperature of the types of oil and cellulose decomposition gases (2.1
and 2.2) provides the basis for the qualitative determination of fault types from the gases that are typical, or
predominant, at various temperatures. These significant gases and proportions are called “key gases.” Fig 3 indicates
these “key gases” and relative proportions for the four general fault types.
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Figure 3— Key Gases Evaluation
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4.6 Evaluation of Possible Fault Type by Analysis of the Separate Combustible Gases
Generated

The use of gas ratios to indicate a single possible fault type is an empirical process based upon the experience of each
individual investigator in correlating the gas analyses of many units with the fault type subsequently assigned as the
cause for disturbance or failure when the unit was examined. This process was attributed to Doernenburg and
subsequently confirmed by Rogers on European systems, from which the bulk of the diagnostic correlation is obtained.
US investigators have applied the European rules to units on US systems with varying degrees of success; however, a
US data base of comparable size to the European reports does not exist.

The diagnostic theories based upon the thermal degradation principles described in 2.1 and 2.2 employ an array of
ratios of certain key combustible gases as the fault type indicators. These five ratios are:

Ratio 1 (R1) = CH/H,

Ratio 2 (R2) = GH,/CoH,
Ratio 3 (R3) = GH,/CH,
Ratio 4 (R4) = GHg/C,H,
Ratio 5 (R5) = GH4/CoHg

The first ratio method (Doernenburg; see 4.6.1) utilizes Ratios 1, 2, 3, and 4. This procedure requires significant levels
of the gases to be present in order for the diagnosis to be valid.

The second method (Rogers; see 4.6.2) utilizes Ratios 1, 2, and 5. The Rogers method does not depend on specific gas
concentrations to exist in the transformer for the diagnosis to be valid. However, it suggests that the method be used
only when the normal limits of the individual gases have been exceeded.

4.6.1 Evaluation of Possible Fault Type by the Doernenburg Ratio Method

The Doernenburg method suggests the existence of three general fault types as discussed in Sections 2. and 3. The
method utilizes gas concentrations from which Ratios 1, 2, 3, and 4 are calculated. The step-by-step procedure (flow
chart) is shown in Fig 4.

The values for these gases are first compared to special concentrdtibrsrable 4 (see Steps 2, 3, and 4 in Fig 4)—

to ascertain whether there really is a problem with the unit and then whether there is sufficient generation of each gas
for the ratio analysis to be applicable. Then the ratios in the order Ratio 1, Ratio 2, Ratio 3, and Ratio 4 are compared
to limiting values, providing a suggested fault diagnosis as given in Table 5. This table gives the limiting values for
ratios of gases dissolved in the oil and gases obtained from the transformer gas space or gas relay.

The flow chart in Fig 4 illustrates the step-by-step application of the Doernenburg ratio method for gases extracted
from the transformer oil only. Exactly the same procedure is followed for gases obtained from the gas space or gas
relays, except the limiting values for the ratios will be those appropriate for gas space (Table 5).

Descriptions of the steps indicated in Fig 4:

Step 1 Gas concentrations are obtained by extracting the gases and separating them by chromatograph (see
Section 7.).

Step 2 If at least one of the gas concentrations (in ppm)£d€H,, C;H,, and GH,4 exceeds twice the values for
limit L1 (see Table 4) and one of the other three gases exceeds the valueslfar, timeitunit is considered
faulty; proceed to Step 3 to determine validity of the ratio procedure.
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Step 3 Determining validity of ratio procedure: If at least one of the gaseslinatio R1, R2, R3, or R4 exceeds
limit L1, the ratio procedure is valid; otherwise, the ratios are not significant, and the unit should be
resampled and investigated by alternate procedures.

Step 4 Assuming that the ratio analysis is valid, each successive ratio is compared to the values obtained from
Table 5 in the order R1, R2, R3, and R4.

Step 5 If all succeeding ratios for a specific fault type fall within the values given in Table 5, the suggested
diagnosis is valid.

Table 4—
Concentration of Dissolved Gas

ConcentrationsL1

Key Gas (ppm)
Hydrogen (H) 100
Methane (CH) 120
Carbon Monoxide (CO) 350
Acetylene (GH,) 35
Ethylene (GHy) 50
Ethane (GHg) 65

*These values differ from Doernenburg's and coincide with
Condition 1 of Table 1.

Table 5— Ratios for Key Gases—Doernenburg

Ratio 1 (R1) Ratio 2 (R2) Ratio 3 (R3) Ratio 4 (R4)
Suggested Fault Extracted From Extracted From Extracted From Extracted From
Diagnosis Oil Gas Space Oil Gas Space Oil Gas Space Oil Gas Space

1-Thermal >1.0 >0.1 <0.75 <1.0 <0.3 <0.1 >0.4 >0.2
Decomposition
2—Corona (Low <0.1 <0.01 Not Significant <0.3 <0.1 >0.4 >0.2
Intensity PD)
3—Arcing (High >0.1 >0.01 >0.75 >1.0 >0.3 >0.1 <0.4 <0.2

Intensity PD) <1.0 <0.1

4.6.2 Evaluation of Possible Fault Type by the Rogers Ratio Method

The Rogers ratio method follows the same general procedure as the Doernenburg method, except only three ratios (R1,
R2, and R5) are used. This method, shown in the step-by-step flow chart (Fig 5), is also based on the thermal
degradation principles described in 2.1 and 2.2. The validity of this method is based on correlation of the results of a
much larger number of failure investigations with the gas analysis for each case. But, as with the Doernenburg method,
the Rogers ratios can give ratios that do not fit into the diagnostic codes; therefore, other analytical methods given in
4.4 and 4.5 should be considered, as well as other options outlined in Fig 2.
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Figure 4— Doernenburg Ratio Method Flow Chart

Table 6 gives the values for the three key gas ratios corresponding to suggested diagnoses (cases). These ratios,
according to Rogers, are applicable to both gases taken from the gas space (or relay) and gases extracted from the oil.
The fault types (cases) given in Table 6 have been chosen by combining some cases from the number of fault types
originally suggested by Rogers.

Fig 5 is a flow chart describing the step-by-step application of the Rogers ratio method.

5. Instruments for Detecting and Determining the Amount of Combustible Gases

Present

5.1 Portable Instruments

Many of the gases generated by a possible malfunction in an oil-filled transformer are combustible. The on-site
detection and estimation of combustible gases in the transformer in the field using a portable combustible gas meter
can be the first and the easiest indication of a possible malfunction, and it may form the basis for further testing or an
operating decision.

When a more accurate determination of the total amount of combustible gases or a quantitative determination of the
individual components is desired, a laboratory analytical method using a gas chromatograph or mass spectrometer may
be used.

Gases generated in transformers can be explosive. Strict precautions should be observed when sampling the gases from
the transformer.
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Figure 5— Rogers Ratio Method Flow Chart

5.2 Fixed Instruments

The reliability of transformers can be improved by either monitoring the gas space or the gases dissolved in the oil
using self-contained, fixed-mounted instruments. These continuous monitoring instruments indicate the presence of a
certain gas or the total combustible gases as well as sound an alarm when the combustible gases exceed a
predetermined level. Optional recorders can also be used to provide a daily record of the combustible gases present.

If the amount of the individual gas components is desired, a laboratory analytical method using a gas chromatograph
or mass spectrometer should be used.

There are three somewhat related methods of monitoring the gases, as described in the following subsections.

NOTE — There will be a tendency for the ratios R2 and R5 to increase to a ratio above 3 as the discharge develops in intensit

5.2.1 Method 1

The first type of gas monitor continually compares the thermal conductivity of the transformer gas with that of pure
nitrogen and is suitable for any transformer of the closed type with a gas space above the transformer oil.
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It is calibrated with hydrogen, although the proportions of the combustibles are not obtained from the measurements.

Table 6— Rogers Ratios for Key Gases

R2 R1 R5
Case CoH, CHy  CHyl Suggested Fault
CoHy Ho CoHg g
0 <0.1 >0.1 <1.0 Unit normal
<1.0
1 <0.1 <0.1 <1.0 Low-energy density
arcing—PD (See
NOTE)
2 0.1- 0.1-1.0 >3.0 Arcing—High-energy
3.0 discharge
3 <0.1 >0.1 1.0 Low temperature
<1.0 3.0 thermal
4 <0.1 >1.0 1.0- Thermal <700C
3.0
5 <0.1 >1.0 >3.0 Thermal >700C

The transformer gas is continually circulated through one section of a Wheatstone bridge and returned to the
transformer. The other section of the bridge contains pure nitrogen and is balanced against the transformer gas.

When combustible gases are produced in the transformer, they mix with the transformer gas and increase the thermal
conductivity of the transformer gas. The increase in the thermal conductivity of the transformer gas unbalances the
Wheatstone bridge, and the unbalance is proportional to the total of the combustible gases as indicated on a meter.

5.2.2 Method 2

The second type of gas monitor continuously samples the transformer gas at fixed intervals and burns any combustible
gases present to provide a measure of the total of the combustible gases. This type of monitor is used only on
transformers with a positive pressure of nitrogen over the oil.

At a fixed interval (usually 24 h), a sample of the transformer gas is pumped from the unit, mixed with air, and passed
over a platinum heating Sensor of a Wheatstone bridge. Any combustible gas in the sample is burned. This raises the
temperature of the sensor and unbalances the bridge, which was balanced against a second platinum sensor in air. The
degree of unbalance is proportional to the amount of total combustible gas present in the transformer gas as indicated
on a meter.

5.2.3 Method 3

The third type of gas monitor continuously measures the amount of hydrogen and other combustible gases dissolved
in the transformer oil.

Hydrogen and the other combustible gases of unknown proportions diffusing through a permeable membrane will be
oxidized on a platinum gas-permeable electrode; oxygen from the ambient air will be electrochemically reduced on a
second electrode. The ionic contact between the two electrodes is provided by a gelled high-concentration sulfuric acid
electrolyte. The electric signal generated by this fuel cell is directly proportional to the total combustible gas
concentration and is sent to a conditioning electric circuit. The resulting output signal is temperature compensated.

A relay is operated in conjunction with the percent gas meter so that when the combustible gases exceed a preset value
the relay sounds an alarm.
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All units that have sounded an alarm should be sampled for complete analysis by a gas chromatograph or mass
spectrometer.

At the time of installation and each year thereafter, the equipment should be standardized to be sure the monitor is
operating properly. The operator should follow the instruction guide of the manufacturer.
6. Procedures for Obtaining Samples of Gas and Oil From the Transformer for

Laboratory Analysis

6.1 Gas Samples for Laboratory Analysis

All samples of gas from the gas blanket above the oil should be taken in accordance with ASTM D3305-84 [2].

6.2 Gas Dissolved in Oil

All samples of oil from electrical apparatus being taken for the purpose of dissolved gas-in-oil analysis should be taken
in accordance with ASTM D3613-87 [4].

Under certain conditions, stratification of dissolved gases in the oil may occur, and complete mixing could require
many hours. In these cases, where possible, oil samples should be obtained from more than one location on the
transformer.

7. Laboratory Methods for Analyzing the Gas Blanket and the Gases Extracted
From the Oil

Comparative tests on essentially identical samples of oil (for instance, from the same transformer) by various
laboratories have indicated a lack of precision, with the measured concentration of certain key gases reported to differ
by a factor of 3 or more. The principal reason appears to be lack of uniformity in the degree, i.e., the efficiency of gas
extraction. For exact and generally applicable threshold or limit values of concentrations or evolution rates of key
gases, it would be necessary to obtain uniform and high (for instance, 97%) efficiencies of extraction for individual
characteristic gases.

7.1 Determination of Total Dissolved Gas

Determination of total dissolved gas should be made in accordance with ASTM D2945-90 [1].

7.2 Determination of Individual Dissolved Gases

Determination of the individual dissolved gases should be made in accordance with ASTM D3612-90 [3].

7.3 Determination of Individual Gases Present in the Gas Blanket

Analysis of the individual gases present in the gas blanket above the oil may be made by using ASTM D3612-90 [3],
beginning at Section 10 of that standard. Sections 13.1 and 13.2 of ASTM D3612-90 [3] are not applicable in this case.
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